Part Number Hot Search : 
UC3891 MBR4015 DTC114 ML6101A F4811 N4148 2M10V 11008
Product Description
Full Text Search
 

To Download EFR32BG12P433F1024GL125-B Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  efr32bg12 blue gecko bluetooth ? low energy soc family data sheet the blue gecko bluetooth low energy family of socs is part of the wireless gecko portfolio. blue gecko socs are ideal for ena- bling energy-friendly bluetooth 5 networking for iot devices. the single-die solution provides industry-leading energy efficiency, ultra-fast wakeup times, a scalable power amplifier, an integrated balun and no-compromise mcu fea- tures. blue gecko applications include: key features ? 32-bit arm? cortex?-m4 core with 40 mhz maximum operating frequency ? up to 1 mb of flash and 256 kb of ram ? pin-compatible with efr32bg1 qfn48 devices (exceptions apply for 5v-tolerant pins) ? 12-channel peripheral reflex system, low-energy sensor interface & multi- channel capacitive sense interface ? autonomous hardware crypto accelerator and true random number generator ? integrated pa with up to 19 dbm transmit power for 2.4 ghz and 20 dbm for sub- ghz radios ? integrated balun for 2.4 ghz ? robust peripheral set and up to 65 gpio ? iot sensors and end devices ? health and wellness ? home and building automation ? accessories ? human interface devices ? metering ? commercial and retail lighting and sensing timers and triggers real time counter and calendar cryotimer timer/counter low energy timer pulse counter watchdog timer protocol timer 32-bit bus peripheral reflex system serial interfaces i/o ports analog i/f lowest power mode with peripheral operational: usart low energy uart tm i 2 c external interrupts general purpose i/o pin reset pin wakeup adc vdac analog comparator em3stop em2deep sleep em1sleep em4hibernate em4shutoff em0active core / memory arm cortex tm m4 processor with dsp extensions and fpu energy management brown-out detector dc-dc converter voltage regulator voltage monitor power-on reset other crypto crc clock management high frequency crystal oscillator low frequency crystal oscillator low frequency rc oscillator high frequency rc oscillator ultra low frequency rc oscillator auxiliary high frequency rc oscillator flash program memory ram memory debug interface with etm ldma controller memory protection unit capacitive sense low energy sensor interface op-amp idac true random number generator radio transceiver demod agc ifadc crc bufc rfsense mod frc rac frequency synthesizer pga pa i q rf frontend lna rfsense pa i q rf frontend lna to 2.4 ghz receive i/q mixers and pa to sub ghz receive i/q mixers and pa to sub ghz and 2.4 ghz pa sub ghz 2.4 ghz balun smu silabs.com | building a more connected world. rev. 1.0
table of contents 1. feature list ................................ 1 2. ordering information ............................ 2 3. system overview .............................. 4 3.1 introduction ............................... 4 3.2 radio ................................. 4 3.2.1 antenna interface ............................ 4 3.2.2 fractional-n frequency synthesizer ...................... 5 3.2.3 receiver architecture ........................... 5 3.2.4 transmitter architecture .......................... 5 3.2.5 wake on radio ............................. 5 3.2.6 rfsense .............................. 5 3.2.7 flexible frame handling .......................... 6 3.2.8 packet and state trace .......................... 6 3.2.9 data buffering ............................. 6 3.2.10 radio controller (rac) .......................... 6 3.2.11 random number generator ........................ 6 3.3 power ................................ 7 3.3.1 energy management unit (emu) ....................... 7 3.3.2 dc-dc converter ............................ 7 3.3.3 power domains ............................ 7 3.4 general purpose input/output (gpio) ...................... 8 3.5 clocking ................................ 8 3.5.1 clock management unit (cmu) ....................... 8 3.5.2 internal and external oscillators ....................... 8 3.6 counters/timers and pwm ......................... 8 3.6.1 timer/counter (timer) .......................... 8 3.6.2 wide timer/counter (wtimer) ....................... 8 3.6.3 real time counter and calendar (rtcc) .................... 8 3.6.4 low energy timer (letimer) ........................ 9 3.6.5 ultra low power wake-up timer (cryotimer) ................. 9 3.6.6 pulse counter (pcnt) .......................... 9 3.6.7 watchdog timer (wdog) ......................... 9 3.7 communications and other digital peripherals ................... 9 3.7.1 universal synchronous/asynchronous receiver/transmitter (usart) .......... 9 3.7.2 low energy universal asynchronous receiver/transmitter (leuart) .......... 9 3.7.3 inter-integrated circuit interface (i 2 c) ..................... 9 3.7.4 peripheral reflex system (prs) ....................... 9 3.7.5 low energy sensor interface (lesense) .................... 10 3.8 security features ............................. 10 3.8.1 gpcrc (general purpose cyclic redundancy check) ............... 10 3.8.2 crypto accelerator (crypto) ........................ 10 3.8.3 true random number generator (trng) .................... 10 3.8.4 security management unit (smu) ...................... 10 silabs.com | building a more connected world. rev. 1.0
3.9 analog ................................ 10 3.9.1 analog port (aport) .......................... 10 3.9.2 analog comparator (acmp) ........................ 10 3.9.3 analog to digital converter (adc) ...................... 11 3.9.4 capacitive sense (csen) ......................... 11 3.9.5 digital to analog current converter (idac) ................... 11 3.9.6 digital to analog converter (vdac) ...................... 11 3.9.7 operational amplifiers .......................... 11 3.10 reset management unit (rmu) ....................... 11 3.11 core and memory ............................ 11 3.11.1 processor core ............................ 11 3.11.2 memory system controller (msc) ...................... 12 3.11.3 linked direct memory access controller (ldma) ................. 12 3.12 memory map .............................. 13 3.13 configuration summary .......................... 15 4. electrical specifications .......................... 16 4.1 electrical characteristics .......................... 16 4.1.1 absolute maximum ratings ........................ 17 4.1.2 operating conditions ........................... 18 4.1.2.1 general operating conditions ....................... 19 4.1.3 thermal characteristics .......................... 20 4.1.4 dc-dc converter ............................ 21 4.1.5 current consumption ........................... 23 4.1.5.1 current consumption 3.3 v without dc-dc converter ............... 23 4.1.5.2 current consumption 3.3 v using dc-dc converter ............... 25 4.1.5.3 current consumption 1.8 v without dc-dc converter ............... 27 4.1.5.4 current consumption using radio 3.3 v with dc-dc ............... 29 4.1.6 wake up times ............................ 31 4.1.7 brown out detector (bod) ......................... 32 4.1.8 frequency synthesizer .......................... 33 4.1.9 2.4 ghz rf transceiver characteristics .................... 34 4.1.9.1 rf transmitter general characteristics for 2.4 ghz band .............. 34 4.1.9.2 rf receiver general characteristics for 2.4 ghz band .............. 35 4.1.9.3 rf transmitter characteristics for bluetooth low energy in the 2.4ghz band, 1 mbps data rate ................................... 36 4.1.9.4 rf receiver characteristics for bluetooth low energy in the 2.4ghz band, 1 mbps data rate 37 4.1.9.5 rf transmitter characteristics for bluetooth low energy in the 2.4ghz band, 2 mbps data rate ................................... 39 4.1.9.6 rf receiver characteristics for bluetooth low energy in the 2.4ghz band, 2 mbps data rate 40 4.1.9.7 rf transmitter characteristics for 802.15.4 dsss-oqpsk in the 2.4 ghz band ...... 42 4.1.9.8 rf receiver characteristics for 802.15.4 dsss-oqpsk in the 2.4 ghz band ....... 44 4.1.10 sub-ghz rf transceiver characteristics ................... 46 4.1.10.1 sub-ghz rf transmitter characteristics for 915 mhz band ............. 47 4.1.10.2 sub-ghz rf receiver characteristics for 915 mhz band ............. 49 4.1.10.3 sub-ghz rf transmitter characteristics for 868 mhz band ............. 52 4.1.10.4 sub-ghz rf receiver characteristics for 868 mhz band ............. 54 4.1.10.5 sub-ghz rf transmitter characteristics for 490 mhz band ............. 56 4.1.10.6 sub-ghz rf receiver characteristics for 490 mhz band ............. 57 silabs.com | building a more connected world. rev. 1.0
4.1.10.7 sub-ghz rf transmitter characteristics for 433 mhz band ............. 59 4.1.10.8 sub-ghz rf receiver characteristics for 433 mhz band ............. 61 4.1.10.9 sub-ghz rf transmitter characteristics for 315 mhz band ............. 64 4.1.10.10 sub-ghz rf receiver characteristics for 315 mhz band ............. 65 4.1.10.11 sub-ghz rf transmitter characteristics for 169 mhz band ............ 67 4.1.10.12 sub-ghz rf receiver characteristics for 169 mhz band ............. 68 4.1.11 modem ............................... 69 4.1.12 oscillators .............................. 70 4.1.12.1 low-frequency crystal oscillator (lfxo) ................... 70 4.1.12.2 high-frequency crystal oscillator (hfxo) .................. 71 4.1.12.3 low-frequency rc oscillator (lfrco) ................... 71 4.1.12.4 high-frequency rc oscillator (hfrco) ................... 72 4.1.12.5 auxiliary high-frequency rc oscillator (auxhfrco) .............. 73 4.1.12.6 ultra-low frequency rc oscillator (ulfrco) ................. 73 4.1.13 flash memory characteristics ....................... 74 4.1.14 general-purpose i/o (gpio) ........................ 75 4.1.15 voltage monitor (vmon) ......................... 77 4.1.16 analog to digital converter (adc) ...................... 78 4.1.17 analog comparator (acmp) ........................ 80 4.1.18 digital to analog converter (vdac) ..................... 83 4.1.19 current digital to analog converter (idac) ................... 86 4.1.20 capacitive sense (csen) ......................... 88 4.1.21 operational amplifier (opamp) ....................... 90 4.1.22 pulse counter (pcnt) .......................... 93 4.1.23 analog port (aport) .......................... 93 4.1.24 i2c ................................ 94 4.1.24.1 i2c standard-mode (sm) ........................ 94 4.1.24.2 i2c fast-mode (fm) .......................... 95 4.1.24.3 i2c fast-mode plus (fm+) ........................ 96 4.1.25 usart spi ............................. 97 4.2 typical performance curves ......................... 98 4.2.1 supply current ............................. 99 4.2.2 dc-dc converter ........................... 104 4.2.3 2.4 ghz radio ............................ 106 5. typical connection diagrams ........................ 108 5.1 power ............................... 108 5.2 rf matching networks .......................... 110 5.3 other connections ........................... 111 6. pin definitions .............................. 112 6.1 bga125 2.4 ghz and sub-ghz device pinout .................. 112 6.2 bga125 2.4 ghz device pinout ....................... 115 6.3 qfn48 2.4 ghz and sub-ghz device pinout .................. 118 6.4 qfn48 2.4 ghz device pinout ....................... 120 6.5 gpio functionality table ......................... 122 6.6 alternate functionality overview ...................... 143 silabs.com | building a more connected world. rev. 1.0
6.7 analog port (aport) client maps ...................... 156 7. bga125 package specifications ....................... 165 7.1 bga125 package dimensions ....................... 165 7.2 bga125 pcb land pattern ........................ 167 7.3 bga125 package marking ........................ 169 8. qfn48 package specifications ........................ 170 8.1 qfn48 package dimensions ........................ 170 8.2 qfn48 pcb land pattern ......................... 172 8.3 qfn48 package marking ......................... 174 9. revision history ............................. 175 9.1 revision 1.0 ............................. 175 9.2 revision 0.6 ............................. 175 9.3 revision 0.5 ............................. 175 9.4 revision 0.2 ............................. 175 silabs.com | building a more connected world. rev. 1.0
1. feature list the efr32bg12 highlighted features are listed below. ? low power wireless system-on-chip . ? high performance 32-bit 40 mhz arm cortex ? -m4 with dsp instruction and floating-point unit for efficient signal processing ? embedded trace macrocell (etm) for advanced debugging ? up to 1024 kb flash program memory ? up to 256 kb ram data memory ? 2.4 ghz and sub-ghz radio operation ? tx power up to 19 dbm ? low energy consumption ? 10.0 ma rx current at 2.4 ghz (1 mbps gfsk) ? 10.8 ma rx current at 2.4 ghz (250 kbps o-qpsk dsss) ? 8.5 ma tx current @ 0 dbm output power at 2.4 ghz ? 70 a/mhz in active mode (em0) ? 1.5 a em2 deepsleep current (16 kb ram retention and rtcc running from lfrco) ? wake on radio with signal strength detection, preamble pattern detection, frame detection and timeout ? high receiver performance ? -95.2 dbm sensitivity @ 1 mbit/s gfsk ? -91.3 dbm sensitivity @ 2 mbit/s gfsk ? -120.6 dbm sensitivity at 2.4 kbps gfsk (868 mhz) ? supported modulation formats ? gfsk ? 2-fsk / 4-fsk with fully configurable shaping ? shaped oqpsk / (g)msk ? configurable dsss and fec ? bpsk / dbpsk tx (opns supporting sub-ghz) ? ook / ask (opns supporting sub-ghz) ? supported protocols: ? bluetooth ? low energy (bluetooth 5) ? proprietary protocols ? wireless m-bus (opns supporting sub-ghz) ? low power wide area networks (opns supporting sub- ghz) ? support for internet security ? general purpose crc ? true random number generator ? hardware cryptographic acceleration for aes 128/256, sha-1, sha-2 (sha-224 and sha-256) and ecc ? wide selection of mcu peripherals ? 12-bit 1 msps sar analog to digital converter (adc) ? 2analog comparator (acmp) ? 2digital to analog converter (vdac) ? 3operational amplifier (opamp) ? digital to analog current converter (idac) ? low-energy sensor interface (lesense) ? multi-channel capacitive sense interface (csen) ? up to 54 pins connected to analog channels (aport) shared between analog peripherals ? up to 65 general purpose i/o pins with output state reten- tion and asynchronous interrupts ? 8 channel dma controller ? 12 channel peripheral reflex system (prs) ? 216-bit timer/counter ? 3 + 4 compare/capture/pwm channels ? 232-bit timer/counter ? 3 + 4 compare/capture/pwm channels ? 32-bit real time counter and calendar ? 16-bit low energy timer for waveform generation ? 32-bit ultra low energy timer/counter for periodic wake-up from any energy mode ? 316-bit pulse counter with asynchronous operation ? 2watchdog timer with dedicated rc oscillator ? 4universal synchronous/asynchronous receiver/trans- mitter (uart/spi/smartcard (iso 7816)/irda/i 2 s) ? low energy uart (leuart ? ) ? 2i 2 c interface with smbus support and address recogni- tion in em3 stop ? wide operating range ? 1.8 v to 3.8 v single power supply ? integrated dc-dc, down to 1.8 v output with up to 200 ma load current for system ? -40 c to 85 c ? qfn48 7x7 mm package ? bga125 7x7 mm package efr32bg12 blue gecko bluetooth ? low energy soc family data sheet feature list silabs.com | building a more connected world. rev. 1.0 | 1
2. ordering information table 2.1. ordering information ordering code protocol stack frequency band @ max tx power flash (kb) ram (kb) gpio package EFR32BG12P433F1024GL125-B ? bluetooth low energy ? proprietary ? 2.4 ghz @ 19 dbm ? sub-ghz @ 20 dbm 1024 256 65 bga125 efr32bg12p433f1024gm48-b ? bluetooth low energy ? proprietary ? 2.4 ghz @ 19 dbm ? sub-ghz @ 20 dbm 1024 256 28 qfn48 efr32bg12p432f1024gl125-b ? bluetooth low energy ? proprietary 2.4 ghz @ 19 dbm 1024 256 65 bga125 efr32bg12p432f1024gm48-b ? bluetooth low energy ? proprietary 2.4 ghz @ 19 dbm 1024 256 31 qfn48 efr32bg12p332f1024gl125-b ? bluetooth low energy ? proprietary 2.4 ghz @ 10 dbm 1024 256 65 bga125 efr32bg12p332f1024gm48-b ? bluetooth low energy ? proprietary 2.4 ghz @ 10 dbm 1024 256 31 qfn48 efr32bg12p232f1024gl125-b ? bluetooth low energy ? proprietary 2.4 ghz @ 10 dbm 1024 128 65 bga125 efr32bg12p232f1024gm48-b ? bluetooth low energy ? proprietary 2.4 ghz @ 10 dbm 1024 128 31 qfn48 efr32bg12p132f1024gl125-b ? bluetooth low energy ? proprietary 2.4 ghz @ 0 dbm 1024 128 65 bga125 efr32bg12p132f1024gm48-b ? bluetooth low energy ? proprietary 2.4 ghz @ 0 dbm 1024 128 31 qfn48 efr32bg12 blue gecko bluetooth ? low energy soc family data sheet ordering information silabs.com | building a more connected world. rev. 1.0 | 2
efr32 C 1 p f g a r tape and reel (optional) revision pin count package C m (qfn), l (bga) flash memory size in kb memory type (flash) feature set code C r2r1r0 r2: reserved r1: rf type C 3 (trx), 2 (rx), 1 (tx) r0: frequency band C 1 (sub-ghz), 2 (2.4 ghz), 3 (dual-band) g x 132 1024 l 125 temperature grade C g (-40 to +85 c), -i (-40 to +125 c) performance grade C p (performance), b (basic), v (value) series family C m (mighty), b (blue), f (flex) wireless gecko 32-bit gecko 2 device configuration figure 2.1. opn decoder efr32bg12 blue gecko bluetooth ? low energy soc family data sheet ordering information silabs.com | building a more connected world. rev. 1.0 | 3
3. system overview 3.1 introduction the efr32 product family combines an energy-friendly mcu with a highly integrated radio transceiver. the devices are well suited for any battery operated application as well as other systems requiring high performance and low energy consumption. this section gives a short introduction to the full radio and mcu system. the detailed functional description can be found in the efr32xg12 wireless gecko reference manual. a block diagram of the efr32bg12 family is shown in figure 3.1 detailed efr32bg12 block diagram on page 4 . the diagram shows a superset of features available on the family, which vary by opn. for more information about specific device features, consult ordering information . analog peripherals clock management hfrco idac arm cortex-m4 core up to 1024 kb isp flash program memory up to 256 kb ram a h b watchdog timer resetn digital peripherals input mux port mapper port i/o configuration analog comparator 12-bit adc temp sense vdd internal reference iovdd auxhfrco lfxo ulfrco hfxo memory protection unit lfrco a p b ldma controller + - aport floating point unit energy management dvdd vregvdd vregsw bypass avdd pavdd rfvdd decouple iovdd voltage monitor radio transceiver 2g4rf_iop 2g4rf_ion 2.4 ghz rf pa i q lna frequency synthesizer demod agc ifadc crc bufc mod frc rac pga subgrf_op subgrf_on sub-ghz rf i q pa subgrf_ip subgrf_in lna to rf frontend circuits balun rfsense vdac + - op-amp capacitive sense lesense crc crypto i2c leuart usart rtc / rtcc pcnt cryotimer timer letimer port k drivers pkn port j drivers pjn port i drivers pin port f drivers pfn port d drivers pdn port c drivers pcn port b drivers pbn port a drivers pan mux & fb hfxtal_p hfxtal_n lfxtal_p lfxtal_n voltage regulator dc-dc converter debug signals (shared w/gpio) brown out / power-on reset reset management unit serial wire and etm debug / programming figure 3.1. detailed efr32bg12 block diagram 3.2 radio the blue gecko family features a radio transceiver supporting bluetooth ? low energy and proprietary short range wireless protocols. 3.2.1 antenna interface the 2.4 ghz antenna interface consists of two pins (2g4rf_iop and 2g4rf_ion) that interface directly to the on-chip balun. the 2g4rf_ion pin should be grounded externally. the external components and power supply connections for the antenna interface typical applications are shown in the rf matching networks section. efr32bg12 blue gecko bluetooth ? low energy soc family data sheet system overview silabs.com | building a more connected world. rev. 1.0 | 4
3.2.2 fractional-n frequency synthesizer the efr32bg12 contains a high performance, low phase noise, fully integrated fractional-n frequency synthesizer. the synthesizer is used in receive mode to generate the lo frequency used by the down-conversion mixer. it is also used in transmit mode to directly generate the modulated rf carrier. the fractional-n architecture provides excellent phase noise performance combined with frequency resolution better than 100 hz, with low energy consumption. the synthesizer has fast frequency settling which allows very short receiver and transmitter wake up times to optimize system energy consumption. 3.2.3 receiver architecture the efr32bg12 uses a low-if receiver architecture, consisting of a low-noise amplifier (lna) followed by an i/q down-conversion mixer, employing a crystal reference. the i/q signals are further filtered and amplified before being sampled by the if analog-to-digital converter (ifadc). the if frequency is configurable from 70 khz to 1.4 mhz. the if can further be configured for high-side or low-side injection, providing flexibility with respect to known interferers at the image frequency. the automatic gain control (agc) module adjusts the receiver gain to optimize performance and avoid saturation for excellent selec- tivity and blocking performance. the 2.4 ghz radio is calibrated at production to improve image rejection performance. the sub-ghz radio can be calibrated on-demand by the user for the desired frequency band. demodulation is performed in the digital domain. the demodulator performs configurable decimation and channel filtering to allow re- ceive bandwidths ranging from 0.1 to 2530 khz. high carrier frequency and baud rate offsets are tolerated by active estimation and compensation. advanced features supporting high quality communication under adverse conditions include forward error correction by block and convolutional coding as well as direct sequence spread spectrum (dsss). a received signal strength indicator (rssi) is available for signal quality metrics, for level-based proximity detection, and for rf chan- nel access by collision avoidance (ca) or listen before talk (lbt) algorithms. an rssi capture value is associated with each received frame and the dynamic rssi measurement can be monitored throughout reception. 3.2.4 transmitter architecture the efr32bg12 uses a direct-conversion transmitter architecture. for constant envelope modulation formats, the modulator controls phase and frequency modulation in the frequency synthesizer. transmit symbols or chips are optionally shaped by a digital shaping filter. the shaping filter is fully configurable, including the bt product, and can be used to implement gaussian or raised cosine shap- ing. carrier sense multiple access - collision avoidance (csma-ca) or listen before talk (lbt) algorithms can be automatically timed by the efr32bg12 . these algorithms are typically defined by regulatory standards to improve inter-operability in a given bandwidth be- tween devices that otherwise lack synchronized rf channel access. 3.2.5 wake on radio the wake on radio feature allows flexible, autonomous rf sensing, qualification, and demodulation without required mcu activity, us- ing a subsystem of the efr32bg12 including the radio controller (rac), peripheral reflex system (prs), and low energy peripher- als. 3.2.6 rfsense the rfsense module generates a system wakeup interrupt upon detection of wideband rf energy at the antenna interface, providing true rf wakeup capabilities from low energy modes including em2, em3 and em4. rfsense triggers on a relatively strong rf signal and is available in the lowest energy modes, allowing exceptionally low energy con- sumption. rfsense does not demodulate or otherwise qualify the received signal, but software may respond to the wakeup event by enabling normal rf reception. various strategies for optimizing power consumption and system response time in presence of false alarms may be employed using available timer peripherals. efr32bg12 blue gecko bluetooth ? low energy soc family data sheet system overview silabs.com | building a more connected world. rev. 1.0 | 5
3.2.7 flexible frame handling efr32bg12 has an extensive and flexible frame handling support for easy implementation of even complex communication protocols. the frame controller (frc) supports all low level and timing critical tasks together with the radio controller and modulator/demodula- tor: ? highly adjustable preamble length ? up to 2 simultaneous synchronization words, each up to 32 bits and providing separate interrupts ? frame disassembly and address matching (filtering) to accept or reject frames ? automatic ack frame assembly and transmission ? fully flexible crc generation and verification: ? multiple crc values can be embedded in a single frame ? 8, 16, 24 or 32-bit crc value ? configurable crc bit and byte ordering ? selectable bit-ordering (least significant or most significant bit first) ? optional data whitening ? optional forward error correction (fec), including convolutional encoding / decoding and block encoding / decoding ? half rate convolutional encoder and decoder with constraint lengths from 2 to 7 and optional puncturing ? optional symbol interleaving, typically used in combination with fec ? symbol coding, such as manchester or dsss, or biphase space encoding using fec hardware ? uart encoding over air, with start and stop bit insertion / removal ? test mode support, such as modulated or unmodulated carrier output ? received frame timestamping 3.2.8 packet and state trace the efr32bg12 frame controller has a packet and state trace unit that provides valuable information during the development phase. it features: ? non-intrusive trace of transmit data, receive data and state information ? data observability on a single-pin uart data output, or on a two-pin spi data output ? configurable data output bitrate / baudrate ? multiplexed transmitted data, received data and state / meta information in a single serial data stream 3.2.9 data buffering the efr32bg12 features an advanced radio buffer controller (bufc) capable of handling up to 4 buffers of adjustable size from 64 bytes to 4096 bytes. each buffer can be used for rx, tx or both. the buffer data is located in ram, enabling zero-copy operations. 3.2.10 radio controller (rac) the radio controller controls the top level state of the radio subsystem in the efr32bg12. it performs the following tasks: ? precisely-timed control of enabling and disabling of the receiver and transmitter circuitry ? run-time calibration of receiver, transmitter and frequency synthesizer ? detailed frame transmission timing, including optional lbt or csma-ca 3.2.11 random number generator the frame controller (frc) implements a random number generator that uses entropy gathered from noise in the rf receive chain. the data is suitable for use in cryptographic applications. output from the random number generator can be used either directly or as a seed or entropy source for software-based random num- ber generator algorithms such as fortuna. efr32bg12 blue gecko bluetooth ? low energy soc family data sheet system overview silabs.com | building a more connected world. rev. 1.0 | 6
3.3 power the efr32bg12 has an energy management unit (emu) and efficient integrated regulators to generate internal supply voltages. only a single external supply voltage is required, from which all internal voltages are created. an optional integrated dc-dc buck regulator can be utilized to further reduce the current consumption. the dc-dc regulator requires one external inductor and one external capaci- tor. the efr32bg12 device family includes support for internal supply voltage scaling, as well as two different power domains groups for peripherals. these enhancements allow for further supply current reductions and lower overall power consumption. avdd and vregvdd need to be 1.8 v or higher for the mcu to operate across all conditions; however the rest of the system will operate down to 1.62 v, including the digital supply and i/o. this means that the device is fully compatible with 1.8 v components. running from a sufficiently high supply, the device can use the dc-dc to regulate voltage not only for itself, but also for other pcb components, supplying up to a total of 200 ma. 3.3.1 energy management unit (emu) the energy management unit manages transitions of energy modes in the device. each energy mode defines which peripherals and features are available and the amount of current the device consumes. the emu can also be used to turn off the power to unused ram blocks, and it contains control registers for the dc-dc regulator and the voltage monitor (vmon). the vmon is used to monitor multi- ple supply voltages. it has multiple channels which can be programmed individually by the user to determine if a sensed supply has fallen below a chosen threshold. 3.3.2 dc-dc converter the dc-dc buck converter covers a wide range of load currents and provides up to 90% efficiency in energy modes em0, em1, em2 and em3, and can supply up to 200 ma to the device and surrounding pcb components. patented rf noise mitigation allows operation of the dc-dc converter without degrading sensitivity of radio components. protection features include programmable current limiting, short-circuit protection, and dead-time protection. the dc-dc converter may also enter bypass mode when the input voltage is too low for efficient operation. in bypass mode, the dc-dc input supply is internally connected directly to its output through a low resistance switch. bypass mode also supports in-rush current limiting to prevent input supply voltage droops due to excessive output current tran- sients. 3.3.3 power domains the efr32bg12 has two peripheral power domains for operation in em2 and lower. if all of the peripherals in a peripheral power do- main are configured as unused, the power domain for that group will be powered off in the low-power mode, reducing the overall cur- rent consumption of the device. table 3.1. peripheral power subdomains peripheral power domain 1 peripheral power domain 2 acmp0 acmp1 pcnt0 pcnt1 adc0 pcnt2 letimer0 csen lesense dac0 aport leuart0 - i2c0 - i2c1 - idac efr32bg12 blue gecko bluetooth ? low energy soc family data sheet system overview silabs.com | building a more connected world. rev. 1.0 | 7
3.4 general purpose input/output (gpio) efr32bg12 has up to 65 general purpose input/output pins. each gpio pin can be individually configured as either an output or input. more advanced configurations including open-drain, open-source, and glitch-filtering can be configured for each individual gpio pin. the gpio pins can be overridden by peripheral connections, like spi communication. each peripheral connection can be routed to several gpio pins on the device. the input value of a gpio pin can be routed through the peripheral reflex system to other peripher- als. the gpio subsystem supports asynchronous external pin interrupts. 3.5 clocking 3.5.1 clock management unit (cmu) the clock management unit controls oscillators and clocks in the efr32bg12 . individual enabling and disabling of clocks to all periph- eral modules is performed by the cmu. the cmu also controls enabling and configuration of the oscillators. a high degree of flexibility allows software to optimize energy consumption in any specific application by minimizing power dissipation in unused peripherals and oscillators. 3.5.2 internal and external oscillators the efr32bg12 supports two crystal oscillators and fully integrates four rc oscillators, listed below. ? a high frequency crystal oscillator (hfxo) with integrated load capacitors, tunable in small steps, provides a precise timing refer- ence for the mcu. crystal frequencies in the range from 38 to 40 mhz are supported. an external clock source such as a tcxo can also be applied to the hfxo input for improved accuracy over temperature. ? a 32.768 khz crystal oscillator (lfxo) provides an accurate timing reference for low energy modes. ? an integrated high frequency rc oscillator (hfrco) is available for the mcu system, when crystal accuracy is not required. the hfrco employs fast startup at minimal energy consumption combined with a wide frequency range. ? an integrated auxilliary high frequency rc oscillator (auxhfrco) is available for timing the general-purpose adc and the serial wire debug port with a wide frequency range. ? an integrated low frequency 32.768 khz rc oscillator (lfrco) can be used as a timing reference in low energy modes, when crys- tal accuracy is not required. ? an integrated ultra-low frequency 1 khz rc oscillator (ulfrco) is available to provide a timing reference at the lowest energy con- sumption in low energy modes. 3.6 counters/timers and pwm 3.6.1 timer/counter (timer) timer peripherals keep track of timing, count events, generate pwm outputs and trigger timed actions in other peripherals through the prs system. the core of each timer is a 16-bit counter with up to 4 compare/capture channels. each channel is configurable in one of three modes. in capture mode, the counter state is stored in a buffer at a selected input event. in compare mode, the channel output reflects the comparison of the counter to a programmed threshold value. in pwm mode, the timer supports generation of pulse-width modulation (pwm) outputs of arbitrary waveforms defined by the sequence of values written to the compare registers, with optional dead-time insertion available in timer unit timer_0 only. 3.6.2 wide timer/counter (wtimer) wtimer peripherals function just as timer peripherals, but are 32 bits wide. they keep track of timing, count events, generate pwm outputs and trigger timed actions in other peripherals through the prs system. the core of each wtimer is a 32-bit counter with up to 4 compare/capture channels. each channel is configurable in one of three modes. in capture mode, the counter state is stored in a buffer at a selected input event. in compare mode, the channel output reflects the comparison of the counter to a programmed thresh- old value. in pwm mode, the wtimer supports generation of pulse-width modulation (pwm) outputs of arbitrary waveforms defined by the sequence of values written to the compare registers, with optional dead-time insertion available in timer unit wtimer_0 only. 3.6.3 real time counter and calendar (rtcc) the real time counter and calendar (rtcc) is a 32-bit counter providing timekeeping in all energy modes. the rtcc includes a binary coded decimal (bcd) calendar mode for easy time and date keeping. the rtcc can be clocked by any of the on-board oscilla- tors with the exception of the auxhfrco, and it is capable of providing system wake-up at user defined instances. when receiving frames, the rtcc value can be used for timestamping. the rtcc includes 128 bytes of general purpose data retention, allowing easy and convenient data storage in all energy modes. efr32bg12 blue gecko bluetooth ? low energy soc family data sheet system overview silabs.com | building a more connected world. rev. 1.0 | 8
3.6.4 low energy timer (letimer) the unique letimer is a 16-bit timer that is available in energy mode em2 deep sleep in addition to em1 sleep and em0 active. this allows it to be used for timing and output generation when most of the device is powered down, allowing simple tasks to be performed while the power consumption of the system is kept at an absolute minimum. the letimer can be used to output a variety of wave- forms with minimal software intervention. the letimer is connected to the real time counter and calendar (rtcc), and can be con- figured to start counting on compare matches from the rtcc. 3.6.5 ultra low power wake-up timer (cryotimer) the cryotimer is a 32-bit counter that is capable of running in all energy modes. it can be clocked by either the 32.768 khz crystal oscillator (lfxo), the 32.768 khz rc oscillator (lfrco), or the 1 khz rc oscillator (ulfrco). it can provide periodic wakeup events and prs signals which can be used to wake up peripherals from any energy mode. the cryotimer provides a wide range of inter- rupt periods, facilitating flexible ultra-low energy operation. 3.6.6 pulse counter (pcnt) the pulse counter (pcnt) peripheral can be used for counting pulses on a single input or to decode quadrature encoded inputs. the clock for pcnt is selectable from either an external source on pin pctnn_s0in or from an internal timing reference, selectable from among any of the internal oscillators, except the auxhfrco. the module may operate in energy mode em0 active, em1 sleep, em2 deep sleep, and em3 stop. 3.6.7 watchdog timer (wdog) the watchdog timer can act both as an independent watchdog or as a watchdog synchronous with the cpu clock. it has windowed monitoring capabilities, and can generate a reset or different interrupts depending on the failure mode of the system. the watchdog can also monitor autonomous systems driven by prs. 3.7 communications and other digital peripherals 3.7.1 universal synchronous/asynchronous receiver/transmitter (usart) the universal synchronous/asynchronous receiver/transmitter is a flexible serial i/o module. it supports full duplex asynchronous uart communication with hardware flow control as well as rs-485, spi, microwire and 3-wire. it can also interface with devices sup- porting: ? iso7816 smartcards ? irda ? i 2 s 3.7.2 low energy universal asynchronous receiver/transmitter (leuart) the unique leuart tm provides two-way uart communication on a strict power budget. only a 32.768 khz clock is needed to allow uart communication up to 9600 baud. the leuart includes all necessary hardware to make asynchronous serial communication possible with a minimum of software intervention and energy consumption. 3.7.3 inter-integrated circuit interface (i 2 c) the i 2 c module provides an interface between the mcu and a serial i 2 c bus. it is capable of acting as both a master and a slave and supports multi-master buses. standard-mode, fast-mode and fast-mode plus speeds are supported, allowing transmission rates from 10 kbit/s up to 1 mbit/s. slave arbitration and timeouts are also available, allowing implementation of an smbus-compliant system. the interface provided to software by the i 2 c module allows precise timing control of the transmission process and highly automated trans- fers. automatic recognition of slave addresses is provided in active and low energy modes. 3.7.4 peripheral reflex system (prs) the peripheral reflex system provides a communication network between different peripheral modules without software involvement. peripheral modules producing reflex signals are called producers. the prs routes reflex signals from producers to consumer periph- erals which in turn perform actions in response. edge triggers and other functionality such as simple logic operations (and, or, not) can be applied by the prs to the signals. the prs allows peripheral to act autonomously without waking the mcu core, saving power. efr32bg12 blue gecko bluetooth ? low energy soc family data sheet system overview silabs.com | building a more connected world. rev. 1.0 | 9
3.7.5 low energy sensor interface (lesense) the low energy sensor interface lesense tm is a highly configurable sensor interface with support for up to 16 individually configura- ble sensors. by controlling the analog comparators, adc, and dac, lesense is capable of supporting a wide range of sensors and measurement schemes, and can for instance measure lc sensors, resistive sensors and capacitive sensors. lesense also includes a programmable finite state machine which enables simple processing of measurement results without cpu intervention. lesense is available in energy mode em2, in addition to em0 and em1, making it ideal for sensor monitoring in applications with a strict energy budget. 3.8 security features 3.8.1 gpcrc (general purpose cyclic redundancy check) the gpcrc module implements a cyclic redundancy check (crc) function. it supports both 32-bit and 16-bit polynomials. the sup- ported 32-bit polynomial is 0x04c11db7 (ieee 802.3), while the 16-bit polynomial can be programmed to any value, depending on the needs of the application. 3.8.2 crypto accelerator (crypto) the crypto accelerator is a fast and energy-efficient autonomous hardware encryption and decryption accelerator. efr32 devices sup- port aes encryption and decryption with 128- or 256-bit keys, ecc over both gf(p) and gf(2 m ), sha-1 and sha-2 (sha-224 and sha-256). supported block cipher modes of operation for aes include: ecb, ctr, cbc, pcbc, cfb, ofb, gcm, cbc-mac, gmac and ccm. supported ecc nist recommended curves include p-192, p-224, p-256, k-163, k-233, b-163 and b-233. the crypto is tightly linked to the radio buffer controller (bufc) enabling fast and efficient autonomous cipher operations on data buffer content. it allows fast processing of gcm (aes), ecc and sha with little cpu intervention. crypto also provides trigger sig- nals for dma read and write operations. 3.8.3 true random number generator (trng) the trng module is a non-deterministic random number generator based on a full hardware solution. the trng is validated with nist800-22 and ais-31 test suites as well as being suitable for fips 140-2 certification (for the purposes of cryptographic key genera- tion). 3.8.4 security management unit (smu) the security management unit (smu) allows software to set up fine-grained security for peripheral access, which is not possible in the memory protection unit (mpu). peripherals may be secured by hardware on an individual basis, such that only priveleged accesses to the peripheral's register interface will be allowed. when an access fault occurs, the smu reports the specific peripheral involved and can optionally generate an interrupt. 3.9 analog 3.9.1 analog port (aport) the analog port (aport) is an analog interconnect matrix allowing access to many analog modules on a flexible selection of pins. each aport bus consists of analog switches connected to a common wire. since many clients can operate differentially, buses are grouped by x/y pairs. 3.9.2 analog comparator (acmp) the analog comparator is used to compare the voltage of two analog inputs, with a digital output indicating which input voltage is high- er. inputs are selected from among internal references and external pins. the tradeoff between response time and current consumption is configurable by software. two 6-bit reference dividers allow for a wide range of internally-programmable reference sources. the acmp can also be used to monitor the supply voltage. an interrupt can be generated when the supply falls below or rises above the programmable threshold. efr32bg12 blue gecko bluetooth ? low energy soc family data sheet system overview silabs.com | building a more connected world. rev. 1.0 | 10
3.9.3 analog to digital converter (adc) the adc is a successive approximation register (sar) architecture, with a resolution of up to 12 bits at up to 1 msps. the output sample resolution is configurable and additional resolution is possible using integrated hardware for averaging over multiple samples. the adc includes integrated voltage references and an integrated temperature sensor. inputs are selectable from a wide range of sources, including pins configurable as either single-ended or differential. 3.9.4 capacitive sense (csen) the csen module is a dedicated capacitive sensing block for implementing touch-sensitive user interface elements such a switches and sliders. the csen module uses a charge ramping measurement technique, which provides robust sensing even in adverse condi- tions including radiated noise and moisture. the module can be configured to take measurements on a single port pin or scan through multiple pins and store results to memory through dma. several channels can also be shorted together to measure the combined ca- pacitance or implement wake-on-touch from very low energy modes. hardware includes a digital accumulator and an averaging filter, as well as digital threshold comparators to reduce software overhead. 3.9.5 digital to analog current converter (idac) the digital to analog current converter can source or sink a configurable constant current. this current can be driven on an output pin or routed to the selected adc input pin for capacitive sensing. the full-scale current is programmable between 0.05 a and 64 a with several ranges consisting of various step sizes. 3.9.6 digital to analog converter (vdac) the digital to analog converter (vdac) can convert a digital value to an analog output voltage. the vdac is a fully differential, 500 ksps, 12-bit converter. the opamps are used in conjunction with the vdac, to provide output buffering. one opamp is used per single- ended channel, or two opamps are used to provide differential outputs. the vdac may be used for a number of different applications such as sensor interfaces or sound output. the vdac can generate high-resolution analog signals while the mcu is operating at low frequencies and with low total power consumption. using dma and a timer, the vdac can be used to generate waveforms without any cpu intervention. the vdac is available in all energy modes down to and including em3. 3.9.7 operational amplifiers the opamps are low power amplifiers with a high degree of flexibility targeting a wide variety of standard opamp application areas. with flexible built-in programming for gain and interconnection they can be configured to support multiple common opamp functions. all pins are also available externally for filter configurations. each opamp has a rail to rail input and a rail to rail output. they can be used in conjunction with the vdac module or in stand-alone configurations. the opamps save energy, pcb space, and cost as compared with standalone opamps because they are integrated on-chip. 3.10 reset management unit (rmu) the rmu is responsible for handling reset of the efr32bg12 . a wide range of reset sources are available, including several power supply monitors, pin reset, software controlled reset, core lockup reset, and watchdog reset. 3.11 core and memory 3.11.1 processor core the arm cortex-m processor includes a 32-bit risc processor integrating the following features and tasks in the system: ? arm cortex-m4 risc processor achieving 1.25 dhrystone mips/mhz ? memory protection unit (mpu) supporting up to 8 memory segments ? up to 1024 kb flash program memory ? up to 256 kb ram data memory ? configuration and event handling of all modules ? 2-pin serial-wire debug interface efr32bg12 blue gecko bluetooth ? low energy soc family data sheet system overview silabs.com | building a more connected world. rev. 1.0 | 11
3.11.2 memory system controller (msc) the memory system controller (msc) is the program memory unit of the microcontroller. the flash memory is readable and writable from both the cortex-m and dma. the flash memory is divided into two blocks; the main block and the information block. program code is normally written to the main block, whereas the information block is available for special user data and flash lock bits. there is also a read-only page in the information block containing system and device calibration data. read and write operations are supported in en- ergy modes em0 active and em1 sleep. 3.11.3 linked direct memory access controller (ldma) the linked direct memory access (ldma) controller allows the system to perform memory operations independently of software. this reduces both energy consumption and software workload. the ldma allows operations to be linked together and staged, enabling so- phisticated operations to be implemented. efr32bg12 blue gecko bluetooth ? low energy soc family data sheet system overview silabs.com | building a more connected world. rev. 1.0 | 12
3.12 memory map the efr32bg12 memory map is shown in the figures below. ram and flash sizes are for the largest memory configuration. figure 3.2. efr32bg12 memory map core peripherals and code space efr32bg12 blue gecko bluetooth ? low energy soc family data sheet system overview silabs.com | building a more connected world. rev. 1.0 | 13
figure 3.3. efr32bg12 memory map peripherals efr32bg12 blue gecko bluetooth ? low energy soc family data sheet system overview silabs.com | building a more connected world. rev. 1.0 | 14
3.13 configuration summary the features of the efr32bg12 are a subset of the feature set described in the device reference manual. the table below describes device specific implementation of the features. remaining modules support full configuration. table 3.2. configuration summary module configuration pin connections usart0 irda smartcard us0_tx, us0_rx, us0_clk, us0_cs usart1 irda i 2 s smartcard us1_tx, us1_rx, us1_clk, us1_cs usart2 irda smartcard us2_tx, us2_rx, us2_clk, us2_cs usart3 irda i 2 s smartcard us3_tx, us3_rx, us3_clk, us3_cs timer0 with dti tim0_cc[2:0], tim0_cdti[2:0] timer1 - tim1_cc[3:0] wtimer0 with dti wtim0_cc[2:0], wtim0_cdti[2:0] wtimer1 - wtim1_cc[3:0] efr32bg12 blue gecko bluetooth ? low energy soc family data sheet system overview silabs.com | building a more connected world. rev. 1.0 | 15
4. electrical specifications 4.1 electrical characteristics all electrical parameters in all tables are specified under the following conditions, unless stated otherwise: ? typical values are based on t amb =25 c and v dd = 3.3 v, by production test and/or technology characterization. ? radio performance numbers are measured in conducted mode, based on silicon laboratories reference designs using output pow- er-specific external rf impedance-matching networks for interfacing to a 50 ? antenna. ? minimum and maximum values represent the worst conditions across supply voltage, process variation, and operating temperature, unless stated otherwise. refer to 4.1.2.1 general operating conditions for more details about operational supply and temperature limits. efr32bg12 blue gecko bluetooth ? low energy soc family data sheet electrical specifications silabs.com | building a more connected world. rev. 1.0 | 16
4.1.1 absolute maximum ratings stresses above those listed below may cause permanent damage to the device. this is a stress rating only and functional operation of the devices at those or any other conditions above those indicated in the operation listings of this specification is not implied. exposure to maximum rating conditions for extended periods may affect device reliability. for more information on the available quality and relia- bility data, see the quality and reliability monitor report at http://www.silabs.com/support/quality/pages/default.aspx . table 4.1. absolute maximum ratings parameter symbol test condition min typ max unit storage temperature range t stg -50 150 c voltage on any supply pin v ddmax -0.3 3.8 v voltage ramp rate on any supply pin v ddrampmax 1 v / s dc voltage on any gpio pin v digpin 5v tolerant gpio pins 1 -0.3 min of 5.25 and iovdd +2 v non-5v tolerant gpio pins -0.3 iovdd+0.3 v voltage on hfxo pins v hfxopin -0.3 1.4 v input rf level on pins 2g4rf_iop and 2g4rf_ion p rfmax2g4 10 dbm voltage differential between rf pins (2g4rf_iop - 2g4rf_ion) v maxdiff2g4 -50 50 mv absolute voltage on rf pins 2g4rf_iop and 2g4rf_ion v max2g4 -0.3 3.3 v absolute voltage on sub- ghz rf pins v maxsubg pins subgrf_op and subgrf_on -0.3 3.3 v pins subgrf_ip and subgrf_in, -0.3 0.3 v total current into vdd power lines i vddmax source 200 ma total current into vss ground lines i vssmax sink 200 ma sink 200 ma current per i/o pin i iomax sink 50 ma source 50 ma current for all i/o pins i ioallmax sink 200 ma source 200 ma junction temperature t j -g grade devices -40 105 c note: 1. when a gpio pin is routed to the analog module through the aport, the maximum voltage = iovdd. efr32bg12 blue gecko bluetooth ? low energy soc family data sheet electrical specifications silabs.com | building a more connected world. rev. 1.0 | 17
4.1.2 operating conditions when assigning supply sources, the following requirements must be observed: ? vregvdd must be the highest voltage in the system ? vregvdd = avdd ? dvdd avdd ? iovdd avdd ? rfvdd avdd ? pavdd avdd efr32bg12 blue gecko bluetooth ? low energy soc family data sheet electrical specifications silabs.com | building a more connected world. rev. 1.0 | 18
4.1.2.1 general operating conditions table 4.2. general operating conditions parameter symbol test condition min typ max unit operating ambient tempera- ture range t a -g temperature grade -40 25 85 c avdd supply voltage 3 v avdd 1.8 3.3 3.8 v vregvdd operating supply voltage 3 1 v vregvdd dcdc in regulation 2.4 3.3 3.8 v dcdc in bypass 50ma load 1.8 3.3 3.8 v dcdc not in use. dvdd external- ly shorted to vregvdd 1.8 3.3 3.8 v vregvdd current i vregvdd dcdc in bypass 200 ma rfvdd operating supply voltage v rfvdd 1.62 v vregvdd v dvdd operating supply volt- age v dvdd 1.62 v vregvdd v pavdd operating supply voltage v pavdd 1.62 v vregvdd v iovdd operating supply volt- age (all iovdd pins) v iovdd 1.62 v vregvdd v decouple output capaci- tor 4 c decouple 0.75 1.0 2.75 f difference between avdd and vregvdd, abs(avdd- vregvdd) 2 dv dd 0.1 v hfcoreclk frequency f core vscale2, mode = ws1 40 mhz vscale0, mode = ws0 20 mhz hfclk frequency f hfclk vscale2 40 mhz vscale0 20 mhz note: 1. the minimum voltage required in bypass mode is calculated using r byp from the dcdc specification table. requirements for other loads can be calculated as v dvdd_min +i load * r byp_max . 2. avdd and vregvdd pins should be physically shorted. 3. vregvdd must be tied to avdd. both vregvdd and avdd minimum voltages must be satisfied for the part to operate. . 4. the system designer should consult the characteristic specs of the capacitor used on decouple to ensure its capacitance val- ue stays within the specified bounds across temperature and dc bias. efr32bg12 blue gecko bluetooth ? low energy soc family data sheet electrical specifications silabs.com | building a more connected world. rev. 1.0 | 19
4.1.3 thermal characteristics table 4.3. thermal characteristics parameter symbol test condition min typ max unit thermal resistance theta ja qfn48 package, 2-layer pcb, air velocity = 0 m/s 75.7 c/w qfn48 package, 2-layer pcb, air velocity = 1 m/s 61.5 c/w qfn48 package, 2-layer pcb, air velocity = 2 m/s 55.4 c/w qfn48 package, 4-layer pcb, air velocity = 0 m/s 30.2 c/w qfn48 package, 4-layer pcb, air velocity = 1 m/s 26.3 c/w qfn48 package, 4-layer pcb, air velocity = 2 m/s 24.9 c/w bga125 package, 2-layer pcb, air velocity = 0 m/s 90.7 c/w bga125 package, 2-layer pcb, air velocity = 1 m/s 73.7 c/w bga125 package, 2-layer pcb, air velocity = 2 m/s 66.4 c/w bga125 package, 4-layer pcb, air velocity = 0 m/s 45 c/w bga125 package, 4-layer pcb, air velocity = 1 m/s 39.6 c/w bga125 package, 4-layer pcb, air velocity = 2 m/s 37.6 c/w efr32bg12 blue gecko bluetooth ? low energy soc family data sheet electrical specifications silabs.com | building a more connected world. rev. 1.0 | 20
4.1.4 dc-dc converter test conditions: l_dcdc=4.7 h (murata lqh3npn4r7mm0l), c_dcdc=4.7 f (samsung cl10b475kq8nqnc), v_dcdc_i=3.3 v, v_dcdc_o=1.8 v, i_dcdc_load=50 ma, heavy drive configuration, f_dcdc_ln=7 mhz, unless otherwise indicated. table 4.4. dc-dc converter parameter symbol test condition min typ max unit input voltage range v dcdc_i bypass mode, i dcdc_load = 50 ma 1.8 v vregvdd_ max v low noise (ln) mode, 1.8 v out- put, i dcdc_load = 100 ma, or low power (lp) mode, 1.8 v out- put, i dcdc_load = 10 ma 2.4 v vregvdd_ max v low noise (ln) mode, 1.8 v out- put, i dcdc_load = 200 ma 2.6 v vregvdd_ max v output voltage programma- ble range 1 v dcdc_o 1.8 v vregvdd v regulation dc accuracy acc dc low noise (ln) mode, 1.8 v tar- get output 1.7 1.9 v regulation window 4 win reg low power (lp) mode, lpcmpbiasemxx 3 = 0, 1.8 v tar- get output, i dcdc_load 75 a 1.63 2.2 v low power (lp) mode, lpcmpbiasemxx 3 = 3, 1.8 v tar- get output, i dcdc_load 10 ma 1.63 2.1 v steady-state output ripple v r radio disabled 3 mvpp output voltage under/over- shoot v ov ccm mode (lnforceccm 3 = 1), load changes between 0 ma and 100 ma 25 60 mv dcm mode (lnforceccm 3 = 0), load changes between 0 ma and 10 ma 45 90 mv overshoot during lp to ln ccm/dcm mode transitions com- pared to dc level in ln mode 200 mv undershoot during byp/lp to ln ccm (lnforceccm 3 = 1) mode transitions compared to dc level in ln mode 40 mv undershoot during byp/lp to ln dcm (lnforceccm 3 = 0) mode transitions compared to dc level in ln mode 100 mv dc line regulation v reg input changes between v vregvdd_max and 2.4 v 0.1 % dc load regulation i reg load changes between 0 ma and 100 ma in ccm mode 0.1 % efr32bg12 blue gecko bluetooth ? low energy soc family data sheet electrical specifications silabs.com | building a more connected world. rev. 1.0 | 21
parameter symbol test condition min typ max unit max load current i load_max low noise (ln) mode, heavy drive 2 200 ma low noise (ln) mode, medium drive 2 100 ma low noise (ln) mode, light drive 2 50 ma low power (lp) mode, lpcmpbiasemxx 3 = 0 75 a low power (lp) mode, lpcmpbiasemxx 3 = 3 10 ma dcdc nominal output ca- pacitor 5 c dcdc 25% tolerance 1 4.7 4.7 f dcdc nominal output induc- tor l dcdc 20% tolerance 4.7 4.7 4.7 h resistance in bypass mode r byp 1.2 2.5 ? note: 1. due to internal dropout, the dc-dc output will never be able to reach its input voltage, v vregvdd . 2. drive levels are defined by configuration of the pfetcnt and nfetcnt registers. light drive: pfetcnt=nfetcnt=3; medi- um drive: pfetcnt=nfetcnt=7; heavy drive: pfetcnt=nfetcnt=15. 3. lpcmpbiasemxx refers to either lpcmpbiasem234h in the emu_dcdcmiscctrl register or lpcmpbiasem01 in the emu_dcdcloem01cfg register, depending on the energy mode. 4. lp mode controller is a hysteretic controller that maintains the output voltage withinthe specified limits. 5. output voltage under/over-shoot and regulation are specified with c dcdc 4.7 f. different control loop settings must be used if c dcdc is lower than 4.7 f. efr32bg12 blue gecko bluetooth ? low energy soc family data sheet electrical specifications silabs.com | building a more connected world. rev. 1.0 | 22
4.1.5 current consumption 4.1.5.1 current consumption 3.3 v without dc-dc converter unless otherwise indicated, typical conditions are: vregvdd = avdd = dvdd = rfvdd = pavdd = 3.3 v. t = 25 c. dcdc is off. minimum and maximum values in this table represent the worst conditions across supply voltage and process variation at t = 25 c. table 4.5. current consumption 3.3 v without dc-dc converter parameter symbol test condition min typ max unit current consumption in em0 mode with all peripherals dis- abled i active 38.4 mhz crystal, cpu running while loop from flash 1 130 a/mhz 38 mhz hfrco, cpu running prime from flash 99 a/mhz 38 mhz hfrco, cpu running while loop from flash 99 105 a/mhz 38 mhz hfrco, cpu running coremark from flash 124 a/mhz 26 mhz hfrco, cpu running while loop from flash 102 108 a/mhz 1 mhz hfrco, cpu running while loop from flash 280 435 a/mhz current consumption in em0 mode with all peripherals dis- abled and voltage scaling enabled i active_vs 19 mhz hfrco, cpu running while loop from flash 88 a/mhz 1 mhz hfrco, cpu running while loop from flash 234 a/mhz current consumption in em1 mode with all peripherals dis- abled i em1 38.4 mhz crystal 1 80 a/mhz 38 mhz hfrco 50 54 a/mhz 26 mhz hfrco 52 58 a/mhz 1 mhz hfrco 230 400 a/mhz current consumption in em1 mode with all peripherals dis- abled and voltage scaling enabled i em1_vs 19 mhz hfrco 47 a/mhz 1 mhz hfrco 193 a/mhz current consumption in em2 mode, with voltage scaling enabled i em2_vs full 256 kb ram retention and rtcc running from lfxo 2.9 a full 256 kb ram retention and rtcc running from lfrco 3.2 a 16 kb (1 bank) ram retention and rtcc running from lfrco 2 2.1 3.5 a current consumption in em3 mode, with voltage scaling enabled i em3_vs full 256 kb ram retention and cryotimer running from ulfr- co 2.56 4.8 a current consumption in em4h mode, with voltage scaling enabled i em4h_vs 128 byte ram retention, rtcc running from lfxo 1.0 a 128 byte ram retention, cryo- timer running from ulfrco 0.45 a 128 byte ram retention, no rtcc 0.43 0.9 a efr32bg12 blue gecko bluetooth ? low energy soc family data sheet electrical specifications silabs.com | building a more connected world. rev. 1.0 | 23
parameter symbol test condition min typ max unit current consumption in em4s mode i em4s no ram retention, no rtcc 0.04 0.1 a note: 1. cmu_hfxoctrl_lowpower=0. 2. cmu_lfrcoctrl_envref = 1, cmu_lfrcoctrl_vrefupdate = 1 efr32bg12 blue gecko bluetooth ? low energy soc family data sheet electrical specifications silabs.com | building a more connected world. rev. 1.0 | 24
4.1.5.2 current consumption 3.3 v using dc-dc converter unless otherwise indicated, typical conditions are: vregvdd = avdd = iovdd = 3.3 v, dvdd = rfvdd = pavdd = 1.8 v dc-dc output. t = 25 c. minimum and maximum values in this table represent the worst conditions across supply voltage and process varia- tion at t = 25 c. table 4.6. current consumption 3.3 v using dc-dc converter parameter symbol test condition min typ max unit current consumption in em0 mode with all peripherals dis- abled, dcdc in low noise dcm mode 2 i active_dcm 38.4 mhz crystal, cpu running while loop from flash 4 88 a/mhz 38 mhz hfrco, cpu running prime from flash 70 a/mhz 38 mhz hfrco, cpu running while loop from flash 70 a/mhz 38 mhz hfrco, cpu running coremark from flash 85 a/mhz 26 mhz hfrco, cpu running while loop from flash 77 a/mhz 1 mhz hfrco, cpu running while loop from flash 636 a/mhz current consumption in em0 mode with all peripherals dis- abled, dcdc in low noise ccm mode 1 i active_ccm 38.4 mhz crystal, cpu running while loop from flash 4 98 a/mhz 38 mhz hfrco, cpu running prime from flash 81 a/mhz 38 mhz hfrco, cpu running while loop from flash 82 a/mhz 38 mhz hfrco, cpu running coremark from flash 95 a/mhz 26 mhz hfrco, cpu running while loop from flash 95 a/mhz 1 mhz hfrco, cpu running while loop from flash 1155 a/mhz current consumption in em0 mode with all peripherals dis- abled and voltage scaling enabled, dcdc in low noise ccm mode 1 i active_ccm_vs 19 mhz hfrco, cpu running while loop from flash 101 a/mhz 1 mhz hfrco, cpu running while loop from flash 1128 a/mhz current consumption in em1 mode with all peripherals dis- abled, dcdc in low noise dcm mode 2 i em1_dcm 38.4 mhz crystal 4 59 a/mhz 38 mhz hfrco 41 a/mhz 26 mhz hfrco 48 a/mhz 1 mhz hfrco 610 a/mhz current consumption in em1 mode with all peripherals dis- abled and voltage scaling enabled, dcdc in low noise dcm mode 2 i em1_dcm_vs 19 mhz hfrco 52 a/mhz 1 mhz hfrco 587 a/mhz efr32bg12 blue gecko bluetooth ? low energy soc family data sheet electrical specifications silabs.com | building a more connected world. rev. 1.0 | 25
parameter symbol test condition min typ max unit current consumption in em2 mode, with voltage scaling enabled, dcdc in lp mode 3 i em2_vs full 256 kb ram retention and rtcc running from lfxo 2.1 a full 256 kb ram retention and rtcc running from lfrco 2.2 a 16 kb (1 bank) ram retention and rtcc running from lfrco 5 1.5 a current consumption in em3 mode, with voltage scaling enabled i em3_vs full 256 kb ram retention and cryotimer running from ulfr- co 1.81 a current consumption in em4h mode, with voltage scaling enabled i em4h_vs 128 byte ram retention, rtcc running from lfxo 0.69 a 128 byte ram retention, cryo- timer running from ulfrco 0.39 a 128 byte ram retention, no rtcc 0.39 a current consumption in em4s mode i em4s no ram retention, no rtcc 0.06 a note: 1. dcdc low noise ccm mode = light drive (pfetcnt=nfetcnt=3), f=6.4 mhz (rcoband=4), anasw=dvdd. 2. dcdc low noise dcm mode = light drive (pfetcnt=nfetcnt=3), f=3.0 mhz (rcoband=0), anasw=dvdd. 3. dcdc low power mode = medium drive (pfetcnt=nfetcnt=7), lposcdiv=1, lpcmpbiasem234h=0, lpclimilim- sel=1, anasw=dvdd. 4. cmu_hfxoctrl_lowpower=0. 5. cmu_lfrcoctrl_envref = 1, cmu_lfrcoctrl_vrefupdate = 1 efr32bg12 blue gecko bluetooth ? low energy soc family data sheet electrical specifications silabs.com | building a more connected world. rev. 1.0 | 26
4.1.5.3 current consumption 1.8 v without dc-dc converter unless otherwise indicated, typical conditions are: vregvdd = avdd = dvdd = rfvdd = pavdd = 1.8 v. t = 25 c. dcdc is off. minimum and maximum values in this table represent the worst conditions across supply voltage and process variation at t = 25 c. table 4.7. current consumption 1.8 v without dc-dc converter parameter symbol test condition min typ max unit current consumption in em0 mode with all peripherals dis- abled i active 38.4 mhz crystal, cpu running while loop from flash 1 130 a/mhz 38 mhz hfrco, cpu running prime from flash 99 a/mhz 38 mhz hfrco, cpu running while loop from flash 99 a/mhz 38 mhz hfrco, cpu running coremark from flash 124 a/mhz 26 mhz hfrco, cpu running while loop from flash 102 a/mhz 1 mhz hfrco, cpu running while loop from flash 277 a/mhz current consumption in em0 mode with all peripherals dis- abled and voltage scaling enabled i active_vs 19 mhz hfrco, cpu running while loop from flash 87 a/mhz 1 mhz hfrco, cpu running while loop from flash 231 a/mhz current consumption in em1 mode with all peripherals dis- abled i em1 38.4 mhz crystal 1 80 a/mhz 38 mhz hfrco 50 a/mhz 26 mhz hfrco 52 a/mhz 1 mhz hfrco 227 a/mhz current consumption in em1 mode with all peripherals dis- abled and voltage scaling enabled i em1_vs 19 mhz hfrco 47 a/mhz 1 mhz hfrco 190 a/mhz current consumption in em2 mode, with voltage scaling enabled i em2_vs full 256 kb ram retention and rtcc running from lfxo 2.8 a full 256 kb ram retention and rtcc running from lfrco 3.0 a 16 kb (1 bank) ram retention and rtcc running from lfrco 2 1.9 a current consumption in em3 mode, with voltage scaling enabled i em3_vs full 256 kb ram retention and cryotimer running from ulfr- co 2.47 a current consumption in em4h mode, with voltage scaling enabled i em4h_vs 128 byte ram retention, rtcc running from lfxo 0.91 a 128 byte ram retention, cryo- timer running from ulfrco 0.35 a 128 byte ram retention, no rtcc 0.35 a current consumption in em4s mode i em4s no ram retention, no rtcc 0.04 a efr32bg12 blue gecko bluetooth ? low energy soc family data sheet electrical specifications silabs.com | building a more connected world. rev. 1.0 | 27
parameter symbol test condition min typ max unit note: 1. cmu_hfxoctrl_lowpower=0. 2. cmu_lfrcoctrl_envref = 1, cmu_lfrcoctrl_vrefupdate = 1 efr32bg12 blue gecko bluetooth ? low energy soc family data sheet electrical specifications silabs.com | building a more connected world. rev. 1.0 | 28
4.1.5.4 current consumption using radio 3.3 v with dc-dc unless otherwise indicated, typical conditions are: vregvdd = avdd = iovdd = 3.3 v, dvdd = rfvdd = pavdd = 1.8 v. t = 25 c. minimum and maximum values in this table represent the worst conditions across supply voltage and process variation at t = 25 c. table 4.8. current consumption using radio 3.3 v with dc-dc parameter symbol test condition min typ max unit current consumption in re- ceive mode, active packet reception (mcu in em1 @ 38.4 mhz, peripheral clocks disabled) i rx_active 500 kbit/s, 2gfsk, f = 915 mhz, radio clock prescaled by 4 9.3 10.2 ma 38.4 kbit/s, 2gfsk, f = 868 mhz, radio clock prescaled by 4 8.6 10.2 ma 38.4 kbit/s, 2gfsk, f = 490 mhz, radio clock prescaled by 4 8.6 10.2 ma 50 kbit/s, 2gfsk, f = 433 mhz, radio clock prescaled by 4 8.6 10.2 ma 38.4 kbit/s, 2gfsk, f = 315 mhz, radio clock prescaled by 4 8.6 10.2 ma 38.4 kbit/s, 2gfsk, f = 169 mhz, radio clock prescaled by 4 8.4 10.2 ma 1 mbit/s, 2gfsk, f = 2.4 ghz, radio clock prescaled by 4 10.0 ma 2 mbit/s, 2gfsk, f = 2.4 ghz, radio clock prescaled by 4 11.5 ma 802.15.4 receiving frame, f = 2.4 ghz, radio clock prescaled by 3 10.8 ma current consumption in re- ceive mode, listening for packet (mcu in em1 @ 38.4 mhz, peripheral clocks disa- bled) i rx_listen 500 kbit/s, 2gfsk, f = 915 mhz, no radio clock prescaling 10.2 11 ma 38.4 kbit/s, 2gfsk, f = 868 mhz, no radio clock prescaling 9.5 11 ma 38.4 kbit/s, 2gfsk, f = 490 mhz, no radio clock prescaling 9.5 11 ma 50 kbit/s, 2gfsk, f = 433 mhz, no radio clock prescaling 9.5 11 ma 38.4 kbit/s, 2gfsk, f = 315 mhz, no radio clock prescaling 9.4 11 ma 38.4 kbit/s, 2gfsk, f = 169 mhz, no radio clock prescaling 9.3 11 ma 1 mbit/s, 2gfsk, f = 2.4 ghz, no radio clock prescaling 10.9 ma 2 mbit/s, 2gfsk, f = 2.4 ghz, no radio clock prescaling 11.9 ma 802.15.4, f = 2.4 ghz, no radio clock prescaling 12.3 ma efr32bg12 blue gecko bluetooth ? low energy soc family data sheet electrical specifications silabs.com | building a more connected world. rev. 1.0 | 29
parameter symbol test condition min typ max unit current consumption in transmit mode (mcu in em1 @ 38.4 mhz, peripheral clocks disabled) i tx f = 915 mhz, cw, 20 dbm match, pavdd connected directly to external 3.3v supply 90.2 134.3 ma f = 915 mhz, cw, 14 dbm match, pavdd connected to dcdc output 36 42.5 ma f = 868 mhz, cw, 20 dbm match, pavdd connected directly to external 3.3v supply 79.7 106.7 ma f = 868 mhz, cw, 14 dbm match, pavdd connected to dcdc output 35.3 41 ma f = 490 mhz, cw, 20 dbm match, pavdd connected directly to external 3.3v supply 93.8 125.4 ma f = 433 mhz, cw, 10 dbm match, pavdd connected to dcdc output 20.3 24 ma f = 433 mhz, cw, 14 dbm match, pavdd connected to dcdc output 34 41.5 ma f = 315 mhz, cw, 14 dbm match, pavdd connected to dcdc output 33.5 42 ma f = 169 mhz, cw, 20 dbm match, pavdd connected directly to external 3.3v supply 88.6 116.7 ma f = 2.4 ghz, cw, 0 dbm output power, radio clock prescaled by 3 8.5 ma f = 2.4 ghz, cw, 0 dbm output power, radio clock prescaled by 1 9.5 ma f = 2.4 ghz, cw, 3 dbm output power 16.5 ma f = 2.4 ghz, cw, 8 dbm output power 26 ma f = 2.4 ghz, cw, 10.5 dbm out- put power 34 ma f = 2.4 ghz, cw, 16.5 dbm out- put power, pavdd connected di- rectly to external 3.3v supply 86 ma f = 2.4 ghz, cw, 19.5 dbm out- put power, pavdd connected di- rectly to external 3.3v supply 131 ma efr32bg12 blue gecko bluetooth ? low energy soc family data sheet electrical specifications silabs.com | building a more connected world. rev. 1.0 | 30
4.1.6 wake up times table 4.9. wake up times parameter symbol test condition min typ max unit wakeup time from em1 t em1_wu 3 ahb clocks wake up from em2 t em2_wu code execution from flash 10.1 s code execution from ram 3.2 s wake up from em3 t em3_wu code execution from flash 10.1 s code execution from ram 3.2 s wake up from em4h 1 t em4h_wu executing from flash 80 s wake up from em4s 1 t em4s_wu executing from flash 291 s time from release of reset source to first instruction ex- ectution t reset soft pin reset released 43 s any other reset released 350 s power mode scaling time t scale vscale0 to vscale2, hfclk = 19 mhz 4 2 31.8 s vscale2 to vscale0, hfclk = 19 mhz 3 4.3 s note: 1. time from wakeup request until first instruction is executed. wakeup results in device reset. 2. vscale0 to vscale2 voltage change transitions occur at a rate of 10 mv/s for approximately 20 s. during this transition, peak currents will be dependent on the value of the decouple output capacitor, from 35 ma (with a 1 f capacitor) to 70 ma (with a 2.7 f capacitor). 3. scaling down from vscale2 to vscale0 requires approximately 2.8 s + 29 hfclks. 4. scaling up from vscale0 to vscale2 requires approximately 30.3 s + 28 hfclks. efr32bg12 blue gecko bluetooth ? low energy soc family data sheet electrical specifications silabs.com | building a more connected world. rev. 1.0 | 31
4.1.7 brown out detector (bod) table 4.10. brown out detector (bod) parameter symbol test condition min typ max unit dvdd bod threshold v dvddbod dvdd rising 1.62 v dvdd falling (em0/em1) 1.35 v dvdd falling (em2/em3) 1.3 v dvdd bod hysteresis v dvddbod_hyst 18 mv dvdd bod response time t dvddbod_delay supply drops at 0.1v/s rate 2.4 s avdd bod threshold v avddbod avdd rising 1.8 v avdd falling (em0/em1) 1.62 v avdd falling (em2/em3) 1.53 v avdd bod hysteresis v avddbod_hyst 20 mv avdd bod response time t avddbod_delay supply drops at 0.1v/s rate 2.4 s em4 bod threshold v em4dbod avdd rising 1.7 v avdd falling 1.45 v em4 bod hysteresis v em4bod_hyst 25 mv em4 bod response time t em4bod_delay supply drops at 0.1v/s rate 300 s efr32bg12 blue gecko bluetooth ? low energy soc family data sheet electrical specifications silabs.com | building a more connected world. rev. 1.0 | 32
4.1.8 frequency synthesizer table 4.11. frequency synthesizer parameter symbol test condition min typ max unit rf synthesizer frequency range f range 2400 - 2483.5 mhz 2400 2483.5 mhz 779 - 956 mhz 779 956 mhz 584 - 717 mhz 584 717 mhz 358 - 574 mhz 358 574 mhz 191 - 358 mhz 191 358 mhz 110 - 191 mhz 110 191 mhz lo tuning frequency resolu- tion with 38.4 mhz crystal f res 2400 - 2483.5 mhz 73 hz 779 - 956 mhz 24 hz 584 - 717 mhz 18.3 hz 358 - 574 mhz 12.2 hz 191 - 358 mhz 7.3 hz 110 - 191 mhz 4.6 hz frequency deviation resolu- tion with 38.4 mhz crystal df res 2400 - 2483.5 mhz 73 hz 779 - 956 mhz 24 hz 584 - 717 mhz 18.3 hz 358 - 574 mhz 12.2 hz 191 - 358 mhz 7.3 hz 110 - 191 mhz 4.6 hz maximum frequency devia- tion with 38.4 mhz crystal df max 2400 - 2483.5 mhz 1677 khz 779 - 956 mhz 559 khz 584 - 717 mhz 419 khz 358 - 574 mhz 280 khz 191 - 358 mhz 167 khz 110 - 191 mhz 105 khz efr32bg12 blue gecko bluetooth ? low energy soc family data sheet electrical specifications silabs.com | building a more connected world. rev. 1.0 | 33
4.1.9 2.4 ghz rf transceiver characteristics 4.1.9.1 rf transmitter general characteristics for 2.4 ghz band unless otherwise indicated, typical conditions are: t = 25 c, vregvdd = avdd = iovdd = 3.3 v, dvdd = rfvdd = pavdd. rfvdd and pavdd path is filtered using ferrites. crystal frequency=38.4 mhz. rf center frequency 2.45 ghz. table 4.12. rf transmitter general characteristics for 2.4 ghz band parameter symbol test condition min typ max unit maximum tx power 1 pout max 19.5 dbm-rated part numbers. pavdd connected directly to ex- ternal 3.3v supply 19.5 dbm 10.5 dbm-rated part numbers 10.5 dbm 0 dbm-rated part numbers dbm minimum active tx power pout min cw -30 dbm output power step size pout step -5 dbm< output power < 0 dbm 1 db 0 dbm < output power < pout max 0.5 db output power variation vs supply at pout max pout var_v 1.8 v < v vregvdd < 3.3 v, pavdd connected directly to ex- ternal supply, for output power > 10.5 dbm. 4.5 db 1.8 v < v vregvdd < 3.3 v, pavdd connected directly to ex- ternal supply, for output power = 10.5 dbm. 3.8 db 1.8 v < v vregvdd < 3.3 v using dc-dc converter 2.2 db output power variation vs temperature at pout max pout var_t from -40 to +85 c, pavdd con- nected to dc-dc output 1.5 db from -40 to +85 c, pavdd con- nected to external supply 1.5 db output power variation vs rf frequency at pout max pout var_f over rf tuning frequency range 0.4 db rf tuning frequency range f range 2400 2483.5 mhz note: 1. supported transmit power levels are determined by the ordering part number (opn). transmit power ratings for all devices cov- ered in this datasheet can be found in the max tx power column of the ordering information table. . efr32bg12 blue gecko bluetooth ? low energy soc family data sheet electrical specifications silabs.com | building a more connected world. rev. 1.0 | 34
4.1.9.2 rf receiver general characteristics for 2.4 ghz band unless otherwise indicated, typical conditions are: t = 25 c, vregvdd = avdd = iovdd = 3.3 v, dvdd = rfvdd = pavdd. rfvdd and pavdd path is filtered using ferrites. crystal frequency=38.4 mhz. rf center frequency 2.45 ghz. table 4.13. rf receiver general characteristics for 2.4 ghz band parameter symbol test condition min typ max unit rf tuning frequency range f range 2400 2483.5 mhz receive mode maximum spurious emission spur rx 30 mhz to 1 ghz -57 dbm 1 ghz to 12 ghz -47 dbm max spurious emissions dur- ing active receive mode, per fcc part 15.109(a) spur rx_fcc 216 mhz to 960 mhz, conducted measurement -55.2 dbm above 960 mhz, conducted measurement -47.2 dbm level above which rfsense will trigger 1 rfsense trig cw at 2.45 ghz -24 dbm level below which rfsense will not trigger 1 rfsense thres cw at 2.45 ghz -50 dbm 1% per sensitivity sens 2gfsk 2 mbps 2gfsk signal -89.6 dbm 250 kbps 2gfsk signal -100.7 dbm note: 1. rfsense performance is only valid from 0 to 85 c. rfsense should be disabled outside this temperature range. efr32bg12 blue gecko bluetooth ? low energy soc family data sheet electrical specifications silabs.com | building a more connected world. rev. 1.0 | 35
4.1.9.3 rf transmitter characteristics for bluetooth low energy in the 2.4ghz band, 1 mbps data rate unless otherwise indicated, typical conditions are: t = 25 c, vregvdd = avdd = iovdd = 3.3 v, dvdd = rfvdd = pavdd. rfvdd and pavdd path is filtered using ferrites. crystal frequency=38.4mhz. rf center frequency 2.45 ghz. maximum duty cycle of 85%. table 4.14. rf transmitter characteristics for bluetooth low energy in the 2.4ghz band, 1 mbps data rate parameter symbol test condition min typ max unit transmit 6db bandwidth txbw 10 dbm 781 khz power spectral density limit psd limit per fcc part 15.247 at 10 dbm -8.4 dbm/ 3khz per fcc part 15.247 at 20 dbm -0.4 dbm/ 3khz per etsi 300.328 at 10 dbm/1 mhz 10.1 dbm occupied channel bandwidth per etsi en300.328 ocp etsi328 99% bw at highest and lowest channels in band, 10 dbm 1.1 mhz in-band spurious emissions, with allowed exceptions 3 spur inb at 2 mhz, 10 dbm -39.5 dbm at 3 mhz, 10 dbm -44.7 dbm at 2 mhz, 20 dbm -20 dbm at 3 mhz, 20 dbm -30 dbm emissions of harmonics out- of-band, per fcc part 15.247 spur hrm_fcc 2nd,3rd, 5, 6, 8, 9,10 harmonics; continuous transmission of modu- lated carrier -47 dbm spurious emissions out-of- band, per fcc part 15.247, excluding harmonics cap- tured in spur harm,fcc . emissions taken at pout_max power level of 19.5 dbm, pavdd connec- ted to external 3.3 v supply spur oob_fcc above 2.483 ghz or below 2.4 ghz; continuous transmission of cw carrier, restricted bands 1 2 -47 dbm above 2.483 ghz or below 2.4 ghz; continuous transmission of cw carrier, non-restricted bands -26 dbc spurious emissions out-of- band; per etsi 300.328 spur etsi328 [2400-bw to 2400] mhz, [2483.5 to 2483.5+bw] mhz -16 dbm [2400-2bw to 2400-bw] mhz, [2483.5+bw to 2483.5+2bw] mhz per etsi 300.328 -26 dbm spurious emissions per etsi en300.440 spur etsi440 47-74 mhz,87.5-108 mhz, 174-230 mhz, 470-862 mhz -60 dbm 25-1000 mhz -42 dbm 1-12 ghz -36 dbm note: 1. for 2476 mhz, 1.5 db of power backoff is used to achieve this value. 2. for 2478 mhz, 4.2 db of power backoff is used to achieve this value. 3. per bluetooth core_5.0, vol.6 part a, section 3.2.2, exceptions are allowed in up to three bands of 1 mhz width, centered on a frequency which is an integer multiple of 1 mhz. these exceptions shall have an absolute value of -20 dbm or less. efr32bg12 blue gecko bluetooth ? low energy soc family data sheet electrical specifications silabs.com | building a more connected world. rev. 1.0 | 36
4.1.9.4 rf receiver characteristics for bluetooth low energy in the 2.4ghz band, 1 mbps data rate unless otherwise indicated, typical conditions are: t = 25 c, vregvdd = avdd = iovdd = 3.3 v, dvdd = rfvdd = pavdd. rfvdd and pavdd path is filtered using ferrites. crystal frequency=38.4mhz. rf center frequency 2.45 ghz. table 4.15. rf receiver characteristics for bluetooth low energy in the 2.4ghz band, 1 mbps data rate parameter symbol test condition min typ max unit max usable receiver input level, 0.1% ber sat signal is reference signal 1 . packet length is 20 bytes. 10 dbm sensitivity, 0.1% ber sens signal is reference signal 1 . using dc-dc converter. -95.2 dbm with non-ideal signals as speci- fied in rf-phy.ts.4.2.2, section 4.6.1. -94.9 dbm signal to co-channel interfer- er, 0.1% ber c/i cc desired signal 3 db above refer- ence sensitivity. 8.3 db n+1 adjacent channel selec- tivity, 0.1% ber, with allowa- ble exceptions. desired is reference signal at -67 dbm c/i 1+ interferer is reference signal at +1 mhz offset. desired frequency 2402 mhz fc 2480 mhz -6.5 db n-1 adjacent channel selec- tivity, 0.1% ber, with allowa- ble exceptions. desired is reference signal at -67 dbm c/i 1- interferer is reference signal at -1 mhz offset. desired frequency 2402 mhz fc 2480 mhz -5.5 db alternate selectivity, 0.1% ber, with allowable excep- tions. desired is reference signal at -67 dbm c/i 2 interferer is reference signal at 2 mhz offset. desired frequency 2402 mhz fc 2480 mhz -44.5 db alternate selectivity, 0.1% ber, with allowable excep- tions. desired is reference signal at -67 dbm c/i 3 interferer is reference signal at 3 mhz offset. desired frequency 2404 mhz fc 2480 mhz -46.4 db selectivity to image frequen- cy, 0.1% ber. desired is ref- erence signal at -67 dbm c/i im interferer is reference signal at im- age frequency with 1 mhz preci- sion -39.8 db selectivity to image frequen- cy 1 mhz, 0.1% ber. de- sired is reference signal at -67 dbm c/i im+1 interferer is reference signal at im- age frequency 1 mhz with 1 mhz precision -47 db blocking, 0.1% ber, desired is reference signal at -67 dbm. interferer is cw in oob range block oob interferer frequency 30 mhz f 2000 mhz -27 dbm interferer frequency 2003 mhz f 2399 mhz -32 dbm interferer frequency 2484 mhz f 2997 mhz -32 dbm interferer frequency 3 ghz f 12.75 ghz -27 dbm intermodulation performance im per core_4.1, vol 6, part a, sec- tion 4.4 with n = 3 -23.7 dbm efr32bg12 blue gecko bluetooth ? low energy soc family data sheet electrical specifications silabs.com | building a more connected world. rev. 1.0 | 37
parameter symbol test condition min typ max unit note: 1. reference signal is defined 2gfsk at -67 dbm, modulation index = 0.5, bt = 0.5, bit rate = 1 mbps, desired data = prbs9; interferer data = prbs15; frequency accuracy better than 1 ppm. efr32bg12 blue gecko bluetooth ? low energy soc family data sheet electrical specifications silabs.com | building a more connected world. rev. 1.0 | 38
4.1.9.5 rf transmitter characteristics for bluetooth low energy in the 2.4ghz band, 2 mbps data rate unless otherwise indicated, typical conditions are: t = 25 c, vregvdd = avdd = iovdd = 3.3 v, dvdd = rfvdd = pavdd. rfvdd and pavdd path is filtered using ferrites. crystal frequency=38.4mhz. rf center frequency 2.45 ghz. maximum duty cycle of 85%. table 4.16. rf transmitter characteristics for bluetooth low energy in the 2.4ghz band, 2 mbps data rate parameter symbol test condition min typ max unit transmit 6db bandwidth txbw 10 dbm 1404 khz power spectral density limit psd limit per fcc part 15.247 at 10 dbm -12.3 dbm/ 3khz per fcc part 15.247 at 20 dbm -4.0 dbm/ 3khz per etsi 300.328 at 10 dbm/1 mhz 11.3 dbm occupied channel bandwidth per etsi en300.328 ocp etsi328 99% bw at highest and lowest channels in band, 10 dbm 2.1 mhz in-band spurious emissions, with allowed exceptions 5 spur inb at 4 mhz, 10 dbm -40.3 dbm at 6 mhz, 10 dbm -43.6 dbm at 4 mhz, 20 dbm -32.3 dbm at 6 mhz, 20 dbm -35.6 dbm emissions of harmonics out- of-band, per fcc part 15.247 spur hrm_fcc 2nd,3rd, 5, 6, 8, 9,10 harmonics; continuous transmission of modu- lated carrier -47 dbm spurious emissions out-of- band, per fcc part 15.247, excluding harmonics cap- tured in spur harm,fcc . emissions taken at pout_max power level of 19.5 dbm, pavdd connec- ted to external 3.3 v supply spur oob_fcc above 2.483 ghz or below 2.4 ghz; continuous transmission of cw carrier, restricted bands 1 2 3 4 -47 dbm above 2.483 ghz or below 2.4 ghz; continuous transmission of cw carrier, non-restricted bands -26 dbc spurious emissions out-of- band; per etsi 300.328 spur etsi328 [2400-bw to 2400] mhz, [2483.5 to 2483.5+bw] mhz -16 dbm [2400-2bw to 2400-bw] mhz, [2483.5+bw to 2483.5+2bw] mhz per etsi 300.328 -26 dbm spurious emissions per etsi en300.440 spur etsi440 47-74 mhz,87.5-108 mhz, 174-230 mhz, 470-862 mhz -60 dbm 25-1000 mhz -42 dbm 1-12 ghz -36 dbm note: 1. for 2472 mhz, 1.3 db of power backoff is used to achieve this value. 2. for 2474 mhz, 3.8 db of power backoff is used to achieve this value. 3. for 2476 mhz, 7 db of power backoff is used to achieve this value. 4. for 2478 mhz, 11.2 db of power backoff is used to achieve this value. 5. per bluetooth core_5.0, vol.6 part a, section 3.2.2, exceptions are allowed in up to three bands of 1 mhz width, centered on a frequency which is an integer multiple of 1 mhz. these exceptions shall have an absolute value of -20 dbm or less. efr32bg12 blue gecko bluetooth ? low energy soc family data sheet electrical specifications silabs.com | building a more connected world. rev. 1.0 | 39
4.1.9.6 rf receiver characteristics for bluetooth low energy in the 2.4ghz band, 2 mbps data rate unless otherwise indicated, typical conditions are: t = 25 c, vregvdd = avdd = iovdd = 3.3 v, dvdd = rfvdd = pavdd. rfvdd and pavdd path is filtered using ferrites. crystal frequency=38.4mhz. rf center frequency 2.45 ghz 1 . table 4.17. rf receiver characteristics for bluetooth low energy in the 2.4ghz band, 2 mbps data rate parameter symbol test condition min typ max unit max usable receiver input level, 0.1% ber sat signal is reference signal 2 . packet length is 20 bytes. 5 dbm sensitivity, 0.1% ber sens signal is reference signal 2 . using dc-dc converter. -91.3 dbm with non-ideal signals as speci- fied in rf-phy.ts.4.2.2, section 4.6.1. -91 dbm signal to co-channel interfer- er, 0.1% ber c/i cc desired signal 3 db above refer- ence sensitivity. 7.3 db n+1 adjacent channel selec- tivity, 0.1% ber, with allowa- ble exceptions. desired is reference signal at -67 dbm c/i 1+ interferer is reference signal at +2 mhz offset. desired frequency 2402 mhz fc 2480 mhz -10.4 db n-1 adjacent channel selec- tivity, 0.1% ber, with allowa- ble exceptions. desired is reference signal at -67 dbm c/i 1- interferer is reference signal at -2 mhz offset. desired frequency 2402 mhz fc 2480 mhz -13.9 db alternate selectivity, 0.1% ber, with allowable excep- tions. desired is reference signal at -67 dbm c/i 2 interferer is reference signal at 4 mhz offset. desired frequency 2402 mhz fc 2480 mhz -40.9 db alternate selectivity, 0.1% ber, with allowable excep- tions. desired is reference signal at -67 dbm c/i 3 interferer is reference signal at 6 mhz offset. desired frequency 2404 mhz fc 2480 mhz -43.7 db selectivity to image frequen- cy, 0.1% ber. desired is ref- erence signal at -67 dbm c/i im interferer is reference signal at im- age frequency with 1 mhz preci- sion -10.4 db selectivity to image frequen- cy 2 mhz, 0.1% ber. de- sired is reference signal at -67 dbm c/i im+1 interferer is reference signal at im- age frequency 2 mhz with 2 mhz precision -40.9 db blocking, 0.1% ber, desired is reference signal at -67 dbm. interferer is cw in oob range block oob interferer frequency 30 mhz f 2000 mhz -27 dbm interferer frequency 2003 mhz f 2399 mhz -32 dbm interferer frequency 2484 mhz f 2997 mhz -32 dbm interferer frequency 3 ghz f 12.75 ghz -27 dbm intermodulation performance im per core_4.1, vol 6, part a, sec- tion 4.4 with n = 3 -25.1 dbm efr32bg12 blue gecko bluetooth ? low energy soc family data sheet electrical specifications silabs.com | building a more connected world. rev. 1.0 | 40
parameter symbol test condition min typ max unit note: 1. for the ble 2mbps in-band blocking performance, there may be up to 5 spurious response channels where the requirement of 30.8% per is not met and therefore an exception will need to be taken for each of these frequencies to meet the requirements of the ble standard. 2. reference signal is defined 2gfsk at -67 dbm, modulation index = 0.5, bt = 0.5, bit rate = 2 mbps, desired data = prbs9; interferer data = prbs15; frequency accuracy better than 1 ppm. efr32bg12 blue gecko bluetooth ? low energy soc family data sheet electrical specifications silabs.com | building a more connected world. rev. 1.0 | 41
4.1.9.7 rf transmitter characteristics for 802.15.4 dsss-oqpsk in the 2.4 ghz band unless otherwise indicated, typical conditions are: t = 25 c, vregvdd = avdd = iovdd = 3.3 v, dvdd = rfvdd = pavdd. rfvdd and pavdd path is filtered using ferrites. crystal frequency=38.4 mhz. rf center frequency 2.45 ghz. maximum duty cycle of 66%. table 4.18. rf transmitter characteristics for 802.15.4 dsss-oqpsk in the 2.4 ghz band parameter symbol test condition min typ max unit error vector magnitude (off- set evm), per 802.15.4-2011, not including 2415 mhz channel evm average across frequency. signal is dsss-oqpsk reference pack- et 1 3.8 % rms power spectral density limit psd limit relative, at carrier 3.5 mhz, 19.5 dbm output power level -26 dbc/ 100khz absolute, at carrier 3.5 mhz, 19.5 dbm output power level 3 -36 dbm/ 100khz per fcc part 15.247, 19.5 dbm output power level -4 dbm/ 3khz etsi 12.1 dbm occupied channel bandwidth per etsi en300.328 ocp etsi328 99% bw at highest and lowest channels in band 2.25 mhz spurious emissions of har- monics in restricted bands per fcc part 15.205/15.209, emissions taken at pout_max power level of 19.5 dbm, pavdd connec- ted to external 3.3 v supply, test frequency is 2450 mhz spur hrm_fcc_ r continuous transmission of modu- lated carrier -45.8 dbm spurious emissions of har- monics in non-restricted bands per fcc part 15.247/15.35, emissions tak- en at pout_max power level of 19.5 dbm, pavdd con- nected to external 3.3 v sup- ply, test frequency is 2450 mhz spur hrm_fcc_ nrr continuous transmission of modu- lated carrier -26 dbc spurious emissions out-of- band (above 2.483 ghz or below 2.4 ghz) in restricted bands, per fcc part 15.205/15.209, emissions taken at pout_max power level of 19.5 dbm, pavdd connected to external 3.3 v supply, test frequency = 2450 mhz spur oob_fcc_ r restricted bands 30-88 mhz; con- tinuous transmission of modulated carrier -61 dbm restricted bands 88-216 mhz; continuous transmission of modu- lated carrier -58 dbm restricted bands 216-960 mhz; continuous transmission of modu- lated carrier -55 dbm restricted bands >960 mhz; con- tinuous transmission of modulated carrier 4 5 -47 dbm efr32bg12 blue gecko bluetooth ? low energy soc family data sheet electrical specifications silabs.com | building a more connected world. rev. 1.0 | 42
parameter symbol test condition min typ max unit spurious emissions out-of- band in non-restricted bands per fcc part 15.247, emis- sions taken at pout_max power level of 19.5 dbm, pavdd connected to exter- nal 3.3 v supply, test fre- quency = 2450 mhz spur oob_fcc_ nr above 2.483 ghz or below 2.4 ghz; continuous transmission of modulated carrier -26 dbc spurious emissions out-of- band; per etsi 300.328 2 spur etsi328 [2400-bw to 2400], [2483.5 to 2483.5+bw]; -16 dbm [2400-2bw to 2400-bw], [2483.5+bw to 2483.5+2bw]; per etsi 300.328 -26 dbm spurious emissions per etsi en300.440 2 spur etsi440 47-74 mhz,87.5-108 mhz, 174-230 mhz, 470-862 mhz -60 dbm 25-1000 mhz, excluding above frequencies -42 dbm 1g-14g -36 dbm note: 1. reference packet is defined as 20 octet psdu, modulated according to 802.15.4-2011 dsss-oqpsk in the 2.4ghz band, with pseudo-random packet data content. 2. specified at maximum power output level of 10 dbm. 3. for 2415 mhz, 2 db of power backoff is used to achieve this value. 4. for 2475 mhz, 2 db of power backoff is used to achieve this value. 5. for 2480 mhz, 13 db of power backoff is used to achieve this value. efr32bg12 blue gecko bluetooth ? low energy soc family data sheet electrical specifications silabs.com | building a more connected world. rev. 1.0 | 43
4.1.9.8 rf receiver characteristics for 802.15.4 dsss-oqpsk in the 2.4 ghz band unless otherwise indicated, typical conditions are: t = 25 c, vregvdd = avdd = iovdd = 3.3 v, dvdd = rfvdd = pavdd. rfvdd and pavdd path is filtered using ferrites. crystal frequency=38.4 mhz. rf center frequency 2.45 ghz. table 4.19. rf receiver characteristics for 802.15.4 dsss-oqpsk in the 2.4 ghz band parameter symbol test condition min typ max unit max usable receiver input level, 1% per sat signal is reference signal 3 . packet length is 20 octets. 10 dbm sensitivity, 1% per sens signal is reference signal. packet length is 20 octets. using dc-dc converter. -102.7 dbm signal is reference signal. packet length is 20 octets. without dc- dc converter. -102.7 dbm co-channel interferer rejec- tion, 1% per ccr desired signal 3 db above sensi- tivity limit -4.6 db high-side adjacent channel rejection, 1% per. desired is reference signal at 3db above reference sensitivity level 4 acr p1 interferer is reference signal at +1 channel-spacing. 40.7 db interferer is filtered reference sig- nal 1 at +1 channel-spacing. 47 db interferer is cw at +1 channel- spacing 2 . 54.3 db low-side adjacent channel rejection, 1% per. desired is reference signal at 3db above reference sensitivity level 4 acr m1 interferer is reference signal at -1 channel-spacing. 40.8 db interferer is filtered reference sig- nal 1 at -1 channel-spacing. 47.5 db interferer is cw at -1 channel- spacing. 56.5 db alternate channel rejection, 1% per. desired is refer- ence signal at 3db above reference sensitivity level 4 acr 2 interferer is reference signal at 2 channel-spacing 51.5 db interferer is filtered reference sig- nal 1 at 2 channel-spacing 53.7 db interferer is cw at 2 channel- spacing 62.4 db image rejection , 1% per, desired is reference signal at 3db above reference sensi- tivity level 4 ir interferer is cw in image band 2 50.4 db blocking rejection of all other channels. 1% per, desired is reference signal at 3db above reference sensitivity level 4 . interferer is reference signal block interferer frequency < desired fre- quency - 3 channel-spacing 58.5 db interferer frequency > desired fre- quency + 3 channel-spacing 56.4 db blocking rejection of 802.11g signal centered at +12mhz or -13mhz block 80211g desired is reference signal at 6db above reference sensitivity level 4 53 db efr32bg12 blue gecko bluetooth ? low energy soc family data sheet electrical specifications silabs.com | building a more connected world. rev. 1.0 | 44
parameter symbol test condition min typ max unit upper limit of input power range over which rssi reso- lution is maintained rssi max 5 dbm lower limit of input power range over which rssi reso- lution is maintained rssi min -98 dbm rssi resolution rssi res over rssi min to rssi max 0.25 db rssi accuracy in the linear region as defined by 802.15.4-2003 rssi lin +/-6 db note: 1. filter is characterized as a symmetric bandpass centered on the adjacent channel having a 3db bandwidth of 4.6 mhz and stop- band rejection better than 26 db beyond 3.15 mhz from the adjacent carrier. 2. due to low-if frequency, there is some overlap of adjacent channel and image channel bands. adjacent channel cw blocker tests place the interferer center frequency at the desired frequency 5 mhz on the channel raster, whereas the image rejection test places the cw interferer near the image frequency of the desired signal carrier, regardless of the channel raster. 3. reference signal is defined as o-qpsk dsss per 802.15.4, frequency range = 2400-2483.5 mhz, symbol rate = 62.5 ksym- bols/s. 4. reference sensitivity level is -85 dbm. efr32bg12 blue gecko bluetooth ? low energy soc family data sheet electrical specifications silabs.com | building a more connected world. rev. 1.0 | 45
4.1.10 sub-ghz rf transceiver characteristics efr32bg12 blue gecko bluetooth ? low energy soc family data sheet electrical specifications silabs.com | building a more connected world. rev. 1.0 | 46
4.1.10.1 sub-ghz rf transmitter characteristics for 915 mhz band unless otherwise indicated, typical conditions are: t = 25 c, vregvdd = avdd = iovdd = 3.3 v, dvdd = rfvdd = pavdd. rfvdd and pavdd path is filtered using ferrites. crystal frequency=38.4 mhz. rf center frequency 915 mhz. table 4.20. sub-ghz rf transmitter characteristics for 915 mhz band parameter symbol test condition min typ max unit rf tuning frequency range f range 902 930 mhz maximum tx power 1 pout max pavdd connected directly to ex- ternal 3.3v supply, 20 dbm output power setting 18 19.8 23.3 dbm pavdd connected to dc-dc out- put, 14 dbm output power setting 12.6 14.2 16.1 dbm minimum active tx power pout min -45.5 dbm output power step size pout step output power > 0 dbm 0.5 db output power variation vs supply at pout max pout var_v 1.8 v < v vregvdd < 3.3 v, pavdd connected to external supply 4.8 db 1.8 v < v vregvdd < 3.3 v, pavdd connected to dc-dc out- put 1.9 db output power variation vs temperature, peak to peak pout var_t -40 to +85c with pavdd connec- ted to external supply 0.6 1.3 db -40 to +85c with pavdd connec- ted to dc-dc output 0.7 1.4 db output power variation vs rf frequency pout var_f pavdd connected to external supply 0.2 0.6 db pavdd connected to dc-dc out- put 0.3 0.6 db spurious emissions of har- monics at 20 dbm output power, conducted measure- ment, 20dbm match, pavdd = 3.3v, test frequency = 915 mhz spur harm_fcc _20 in restricted bands, per fcc part 15.205 / 15.209 -45 -42 dbm in non-restricted bands, per fcc part 15.231 -26 -20 dbc spurious emissions out-of- band at 20 dbm output pow- er, conducted measurement, 20dbm match, pavdd = 3.3v, test frequency = 915 mhz spur oob_fcc_ 20 in non-restricted bands, per fcc part 15.231 -26 -20 dbc in restricted bands (30-88 mhz), per fcc part 15.205 / 15.209 -52 -46 dbm in restricted bands (88-216 mhz), per fcc part 15.205 / 15.209 -61 -56 dbm in restricted bands (216-960 mhz), per fcc part 15.205 / 15.209 -58 -52 dbm in restricted bands (>960 mhz), per fcc part 15.205 / 15.209 -47 -42 dbm efr32bg12 blue gecko bluetooth ? low energy soc family data sheet electrical specifications silabs.com | building a more connected world. rev. 1.0 | 47
parameter symbol test condition min typ max unit spurious emissions of har- monics at 14 dbm output power, conducted measure- ment, 14dbm match, pavdd connected to dc-dc output, test frequency = 915 mhz spur harm_fcc _14 in restricted bands, per fcc part 15.205 / 15.209 -47 -42 dbm in non-restricted bands, per fcc part 15.231 -26 -20 dbc spurious emissions out-of- band at 14 dbm output pow- er, conducted measurement, 14dbm match, pavdd con- nected to dc-dc output, test frequency = 915 mhz spur oob_fcc_ 14 in non-restricted bands, per fcc part 15.231 -26 -20 dbc in restricted bands (30-88 mhz), per fcc part 15.205 / 15.209 -52 -46 dbm in restricted bands (88-216 mhz), per fcc part 15.205 / 15.209 -61 -56 dbm in restricted bands (216-960 mhz), per fcc part 15.205 / 15.209 -58 -52 dbm in restricted bands (>960 mhz), per fcc part 15.205 / 15.209 -45 -42 dbm error vector magnitude (off- set evm), per 802.15.4-2011 evm signal is dsss-oqpsk reference packet. modulated according to 802.15.4-2011 dsss-oqpsk in the 915mhz band, with pseudo- random packet data content. pavdd connected to external 3.3v supply. 1.0 2.8 %rms power spectral density limit psd relative, at carrier 1.2 mhz. average spectral power shall be measured using a 100khz resolu- tion bandwidth. the reference lev- el shall be the highest average spectral power measured within 600khz of the carrier frequency. pavdd connected to external 3.3v supply. -37.1 -24.8 dbc/ 100khz absolute, at carrier 1.2 mhz. average spectral power shall be measured using a 100khz resolu- tion bandwidth. pavdd connec- ted to external 3.3v supply. -24.2 -20 dbm/ 100khz note: 1. supported transmit power levels are determined by the ordering part number (opn). transmit power ratings for all devices cov- ered in this datasheet can be found in the max tx power column of the ordering information table. . efr32bg12 blue gecko bluetooth ? low energy soc family data sheet electrical specifications silabs.com | building a more connected world. rev. 1.0 | 48
4.1.10.2 sub-ghz rf receiver characteristics for 915 mhz band unless otherwise indicated, typical conditions are: t = 25 c, vregvdd = avdd = iovdd = 3.3 v, dvdd = rfvdd = pavdd. rfvdd and pavdd path is filtered using ferrites. crystal frequency=38.4 mhz. rf center frequency 915 mhz. table 4.21. sub-ghz rf receiver characteristics for 915 mhz band parameter symbol test condition min typ max unit tuning frequency range f range 902 930 mhz max usable input level, 0.1% ber sat 500k desired is reference 500 kbps gfsk signal 4 10 dbm sensitivity sens desired is reference 4.8 kbps ook signal 3 , 20% per -105.2 -100.7 dbm desired is reference 600 bps gfsk signal 6 , 0.1% ber -126.2 dbm desired is reference 50 kbps gfsk signal 5 , 0.1% ber -108.2 -104.2 dbm desired is reference 100 kbps gfsk signal 1 , 0.1% ber -105.1 -101.5 dbm desired is reference 500 kbps gfsk signal 4 , 0.1% ber -98.2 -93.2 dbm desired is reference 400 kbps gfsk signal 2 , 1% per -95.2 -91 dbm level above which rfsense will trigger 7 rfsense trig cw at 915 mhz -28.1 dbm level below which rfsense will not trigger 7 rfsense thres cw at 915 mhz -50 dbm adjacent channel selectivity, interferer is cw at 1 channel-spacing c/i 1 desired is 4.8 kbps ook signal 3 at 3db above sensitivity level, 20% per 48.1 db desired is 600 bps gfsk signal 6 at 3db above sensitivity level, 0.1% ber 71.4 db desired is 50 kbps gfsk signal 5 at 3db above sensitivity level, 0.1% ber 49.8 db desired is 100 kbps gfsk signal 1 at 3db above sensitivity level, 0.1% ber 51.1 db desired is 500 kbps gfsk signal 4 at 3db above sensitivity level, 0.1% ber 48.1 db desired is 400 kbps 4gfsk sig- nal 2 at 3db above sensitivity level, 0.1% ber 41.4 db efr32bg12 blue gecko bluetooth ? low energy soc family data sheet electrical specifications silabs.com | building a more connected world. rev. 1.0 | 49
parameter symbol test condition min typ max unit alternate channel selectivity, interferer is cw at 2 channel-spacing c/i 2 desired is 4.8 kbps ook signal 3 at 3db above sensitivity level, 20% per 56.3 db desired is 600 bps gfsk signal 6 at 3db above sensitivity level, 0.1% ber 74.7 db desired is 50 kbps gfsk signal 5 at 3db above sensitivity level, 0.1% ber 55.8 db desired is 100 kbps gfsk signal 1 at 3db above sensitivity level, 0.1% ber 56.4 db desired is 500 kbps gfsk signal 4 at 3db above sensitivity level, 0.1% ber 51.8 db desired is 400 kbps 4gfsk sig- nal 2 at 3db above sensitivity level, 0.1% ber 46.8 db image rejection, interferer is cw at image frequency c/i image desired is 4.8 kbps ook signal 3 at 3db above sensitivity level, 20% per 48.4 db desired is 50 kbps gfsk signal 5 at 3db above sensitivity level, 0.1% ber 54.9 db desired is 100 kbps gfsk signal 1 at 3db above sensitivity level, 0.1% ber 49.1 db desired is 500 kbps gfsk signal 4 at 3db above sensitivity level, 0.1% ber 47.9 db desired is 400 kbps 4gfsk sig- nal 2 at 3db above sensitivity level, 0.1% ber 42.8 db blocking selectivity, 0.1% ber. desired is 100 kbps gfsk signal at 3db above sensitivity level c/i blocker interferer cw at desired 1 mhz 58.7 db interferer cw at desired 2 mhz 62.5 db interferer cw at desired 10 mhz 76.4 db intermod selectivity, 0.1% ber. cw interferers at 400 khz and 800 khz offsets c/i im desired is 100 kbps gfsk signal 1 at 3db above sensitivity level 45 db upper limit of input power range over which rssi reso- lution is maintained rssi max 5 dbm lower limit of input power range over which rssi reso- lution is maintained rssi min -98 dbm rssi resolution rssi res over rssi min to rssi max range 0.25 dbm efr32bg12 blue gecko bluetooth ? low energy soc family data sheet electrical specifications silabs.com | building a more connected world. rev. 1.0 | 50
parameter symbol test condition min typ max unit max spurious emissions dur- ing active receive mode, per fcc part 15.109(a) spur rx_fcc 216-960 mhz -55 -49.2 dbm above 960 mhz -47 -41.2 dbm max spurious emissions dur- ing active receive mode,per arib std-t108 section 3.3 spur rx_arib below 710 mhz, rbw=100khz -60 -54 dbm 710-900 mhz, rbw=1mhz -61 -55 dbm 900-915 mhz, rbw=100khz -61 -55 dbm 915-930 mhz, rbw=100khz -61 -55 dbm 930-1000 mhz, rbw=100khz -60 -54 dbm above 1000 mhz, rbw=1mhz -53 -47 dbm note: 1. definition of reference signal is 100 kbps 2gfsk, bt=0.5, f = 50 khz, rx channel bw = 198.024 khz, channel spacing = 400 khz. 2. definition of reference signal is 400 kbps 4gfsk, bt=0.5, inner deviation = 33.3 khz, rx channel bw = 368.920 khz, channel spacing = 600 khz. 3. definition of reference signal is 4.8 kbps ook, rx channel bw = 306.036 khz, channel spacing = 500 khz. 4. definition of reference signal is 500 kbps 2gfsk, bt=0.5, f = 175 khz, rx channel bw = 835.076 khz, channel spacing = 1 mhz. 5. definition of reference signal is 50 kbps 2gfsk, bt=0.5, f = 25 khz, rx channel bw = 99.012 khz, channel spacing = 200 khz. 6. definition of reference signal is 600 bps 2gfsk, bt=0.5, f = 0.3 khz, rx channel bw = 1.2 khz, channel spacing = 300 khz. 7. rfsense performance is only valid from 0 to 85 c. rfsense should be disabled outside this temperature range. efr32bg12 blue gecko bluetooth ? low energy soc family data sheet electrical specifications silabs.com | building a more connected world. rev. 1.0 | 51
4.1.10.3 sub-ghz rf transmitter characteristics for 868 mhz band unless otherwise indicated, typical conditions are: t = 25 c, vregvdd = avdd = iovdd = 3.3 v, dvdd = rfvdd = pavdd. rfvdd and pavdd path is filtered using ferrites. crystal frequency=38.4 mhz. rf center frequency 868 mhz. table 4.22. sub-ghz rf transmitter characteristics for 868 mhz band parameter symbol test condition min typ max unit rf tuning frequency range f range 863 876 mhz maximum tx power 1 pout max pavdd connected directly to ex- ternal 3.3v supply, 20 dbm output power setting 17.1 19.3 22.9 dbm pavdd connected to dc-dc out- put, 14 dbm output power setting 11.4 13.7 16.5 dbm minimum active tx power pout min -43.5 dbm output power step size pout step output power > 0 dbm 0.5 db output power variation vs supply at pout max pout var_v_no dcdc 1.8 v < v vregvdd < 3.3 v, pavdd connected to external supply 5 db 1.8 v < v vregvdd < 3.3 v, pavdd connected to dc-dc out- put 2 db output power variation vs temperature, peak to peak pout var_t -40 to +85c with pavdd connec- ted to external supply 0.6 0.9 db -40 to +85c with pavdd connec- ted to dc-dc output 0.5 1.2 db output power variation vs rf frequency pout var_f_no dcdc pavdd connected to external supply 0.2 0.6 db pavdd connected to dc-dc out- put 0.2 0.8 db spurious emissions of har- monics, conducted meas- urement, pavdd connected to dc-dc output spur harm_etsi per etsi en 300-220, section 7.8.2.1 -35 -30 dbm spurious emissions out-of- band, conducted measure- ment, pavdd connected to dc-dc output spur oob_etsi per etsi en 300-220, section 7.8.2.1 (47-74 mhz, 87.5-118 mhz, 174-230 mhz, and 470-862 mhz) -59 -54 dbm per etsi en 300-220, section 7.8.2.1 (other frequencies below 1 ghz) -60 -36 dbm per etsi en 300-220, section 7.8.2.1 (frequencies above 1 ghz) -36 -30 dbm error vector magnitude (off- set evm), per 802.15.4-2015 evm signal is dsss-bpsk reference packet. modulated according to 802.15.4-2015 dsss-bpsk in the 868mhz band, with pseudo-ran- dom packet data content. pavdd connected to external 3.3v supply 5.7 %rms efr32bg12 blue gecko bluetooth ? low energy soc family data sheet electrical specifications silabs.com | building a more connected world. rev. 1.0 | 52
parameter symbol test condition min typ max unit note: 1. supported transmit power levels are determined by the ordering part number (opn). transmit power ratings for all devices cov- ered in this datasheet can be found in the max tx power column of the ordering information table. . efr32bg12 blue gecko bluetooth ? low energy soc family data sheet electrical specifications silabs.com | building a more connected world. rev. 1.0 | 53
4.1.10.4 sub-ghz rf receiver characteristics for 868 mhz band unless otherwise indicated, typical conditions are: t = 25 c, vregvdd = avdd = iovdd = 3.3 v, dvdd = rfvdd = pavdd. rfvdd and pavdd path is filtered using ferrites. crystal frequency=38.4 mhz. rf center frequency 868 mhz. table 4.23. sub-ghz rf receiver characteristics for 868 mhz band parameter symbol test condition min typ max unit tuning frequency range f range 863 876 mhz max usable input level, 0.1% ber sat 2k4 desired is reference 2.4 kbps gfsk signal 1 10 dbm max usable input level, 0.1% ber sat 38k4 desired is reference 38.4 kbps gfsk signal 2 10 dbm sensitivity sens desired is reference 2.4 kbps gfsk signal 1 , 0.1% ber -120.6 dbm desired is reference 38.4 kbps gfsk signal 2 , 0.1% ber -109.5 -105.4 dbm desired is reference 500 kbps gfsk signal 3 , 0.1% ber -96.4 dbm desired is reference bpsk sig- nal 4 , 1% per -110.6 dbm level above which rfsense will trigger 5 rfsense trig cw at 868 mhz -28.1 dbm level below which rfsense will not trigger 5 rfsense thres cw at 868 mhz -50 dbm adjacent channel selectivity, interferer is cw at 1 channel-spacing c/i 1 desired is 2.4 kbps gfsk signal 1 at 3db above sensitivity level, 0.1% ber 44.5 56.9 db desired is 38.4kbps gfsk signal 2 at 3db above sensitivity level, 0.1% ber 35.4 43 db alternate channel selectivity, interferer is cw at 2 channel-spacing c/i 2 desired is 2.4kbps gfsk signal 1 at 3db above sensitivity level, 0.1% ber 56.8 db desired is 38.4kbps gfsk signal 2 at 3db above sensitivity level, 0.1% ber 48.2 db image rejection, interferer is cw at image frequency c/i image desired is 2.4kbps gfsk signal 1 at 3db above sensitivity level, 0.1% ber 50.2 db desired is 38.4kbps gfsk signal 2 at 3db above sensitivity level, 0.1% ber 48.7 db blocking selectivity, 0.1% ber. desired is 2.4 kbps gfsk signal 1 at 3 db above sensitivity level c/i blocker interferer cw at desired 1 mhz 72.1 db interferer cw at desired 2 mhz 77.5 db interferer cw at desired 10 mhz 90.4 db efr32bg12 blue gecko bluetooth ? low energy soc family data sheet electrical specifications silabs.com | building a more connected world. rev. 1.0 | 54
parameter symbol test condition min typ max unit upper limit of input power range over which rssi reso- lution is maintained rssi max 5 dbm lower limit of input power range over which rssi reso- lution is maintained rssi min -98 dbm rssi resolution rssi res over rssi min to rssi max range 0.25 dbm max spurious emissions dur- ing active receive mode spur rx 30 mhz to 1 ghz -63 -57 dbm 1 ghz to 12 ghz -53 -47 dbm note: 1. definition of reference signal is 2.4 kbps 2gfsk, bt=0.5, f = 1.2 khz, rx channel bw = 4.797 khz, channel spacing = 12.5 khz. 2. definition of reference signal is 38.4 kbps 2gfsk, bt=0.5, f = 20 khz, rx channel bw = 74.809 khz, channel spacing = 100 khz. 3. definition of reference signal is 500 kbps 2gfsk, bt=0.5, f = 125 khz, rx channel bw = 753.320 khz. 4. definition of reference signal is 20 kbps bpsk 5. rfsense performance is only valid from 0 to 85 c. rfsense should be disabled outside this temperature range. efr32bg12 blue gecko bluetooth ? low energy soc family data sheet electrical specifications silabs.com | building a more connected world. rev. 1.0 | 55
4.1.10.5 sub-ghz rf transmitter characteristics for 490 mhz band unless otherwise indicated, typical conditions are: t = 25 c, vregvdd = avdd = iovdd = 3.3 v, dvdd = rfvdd = pavdd. rfvdd and pavdd path is filtered using ferrites. crystal frequency=38.4 mhz. rf center frequency 490 mhz. table 4.24. sub-ghz rf transmitter characteristics for 490 mhz band parameter symbol test condition min typ max unit rf tuning frequency range f range 470 510 mhz maximum tx power 1 pout max pavdd connected directly to ex- ternal 3.3v supply 18.1 20.3 23.7 dbm minimum active tx power pout min -44.9 dbm output power step size pout step output power > 0 dbm 0.5 db output power variation vs supply, peak to peak pout var_v at 20 dbm;1.8 v < v vregvdd < 3.3 v, pavdd connected directly to external supply 4.3 db output power variation vs temperature, peak to peak pout var_t -40 to +85c at 20 dbm 0.2 0.9 db output power variation vs rf frequency pout var_f 0.2 0.4 db harmonic emissions, 20 dbm output power setting, 490 mhz spur harm_cn per china srw requirement, section 2.1, frequencies below 1ghz -40 -36 dbm per china srw requirement, section 2.1, frequencies above 1ghz -36 -30 dbm spurious emissions, 20 dbm output power setting, 490 mhz spur oob_cn per china srw requirement, section 3 (48.5-72.5mhz, 76-108mhz, 167-223mhz, 470-556mhz, and 606-798mhz) -54 dbm per china srw requirement, section 2.1 (other frequencies be- low 1ghz) -42 dbm per china srw requirement, section 2.1 (frequencies above 1ghz) -36 dbm note: 1. supported transmit power levels are determined by the ordering part number (opn). transmit power ratings for all devices cov- ered in this datasheet can be found in the max tx power column of the ordering information table. . efr32bg12 blue gecko bluetooth ? low energy soc family data sheet electrical specifications silabs.com | building a more connected world. rev. 1.0 | 56
4.1.10.6 sub-ghz rf receiver characteristics for 490 mhz band unless otherwise indicated, typical conditions are: t = 25 c, vregvdd = avdd = iovdd = 3.3 v, dvdd = rfvdd = pavdd. rfvdd and pavdd path is filtered using ferrites. crystal frequency=38.4 mhz. rf center frequency 490 mhz. table 4.25. sub-ghz rf receiver characteristics for 490 mhz band parameter symbol test condition min typ max unit tuning frequency range f range 470 510 dbm max usable input level, 0.1% ber sat 2k4 desired is reference 2.4 kbps gfsk signal 3 10 dbm max usable input level, 0.1% ber sat 38k4 desired is reference 38.4 kbps gfsk signal 4 10 dbm sensitivity sens desired is reference 2.4 kbps gfsk signal 3 , 0.1% ber -122.2 dbm desired is reference 38.4 kbps gfsk signal 4 , 0.1% ber -111.4 -108.9 dbm desired is reference 10 kbps gfsk signal 2 , 0.1% ber -116.8 -113.9 dbm desired is reference 100 kbps gfsk signal 1 , 0.1% ber -107.3 -104.7 dbm level above which rfsense will trigger 5 rfsense trig cw at 490 mhz -28.1 dbm level below which rfsense will not trigger 5 rfsense thres cw at 490 mhz -50 dbm adjacent channel selectivity, interferer is cw at 1 channel-spacing c/i 1 desired is 2.4 kbps gfsk signal 3 at 3db above sensitivity level, 0.1% ber 48 60.3 db desired is 38.4kbps gfsk signal 4 at 3db above sensitivity level, 0.1% ber 38.3 45.6 db alternate channel selectivity, interferer is cw at 2 channel-spacing c/i 2 desired is 2.4kbps gfsk signal 3 at 3db above sensitivity level, 0.1% ber 60.4 db desired is 38.4kbps gfsk signal 4 at 3db above sensitivity level, 0.1% ber 52.6 db image rejection, interferer is cw at image frequency c/i image desired is 2.4kbps gfsk signal 3 at 3db above sensitivity level, 0.1% ber 56.5 db desired is 38.4kbps gfsk signal 4 at 3db above sensitivity level, 0.1% ber 54.1 db blocking selectivity, 0.1% ber. desired is 2.4 kbps gfsk signal 3 at 3 db above sensitivity level c/i blocker interferer cw at desired 1 mhz 73.9 db interferer cw at desired 2 mhz 75.4 db interferer cw at desired 10 mhz 90.2 db efr32bg12 blue gecko bluetooth ? low energy soc family data sheet electrical specifications silabs.com | building a more connected world. rev. 1.0 | 57
parameter symbol test condition min typ max unit upper limit of input power range over which rssi reso- lution is maintained rssi max 5 dbm lower limit of input power range over which rssi reso- lution is maintained rssi min -98 dbm rssi resolution rssi res over rssi min to rssi max range 0.25 dbm max spurious emissions dur- ing active receive mode spur rx 30 mhz to 1 ghz -53 -47 dbm 1 ghz to 12 ghz -53 -47 dbm note: 1. definition of reference signal is 100 kbps 2gfsk, bt=0.5, f = 50 khz, rx channel bw = 198.024 khz. 2. definition of reference signal is 10 kbps 2gfsk, bt=0.5, f = 5 khz, rx channel bw = 21.038 khz. 3. definition of reference signal is 2.4 kbps 2gfsk, bt=0.5, f = 1.2 khz, rx channel bw = 4.798 khz, channel spacing = 12.5 khz. 4. definition of reference signal is 38.4 kbps 2gfsk, bt=0.5, f = 20 khz, rx channel bw = 74.809 khz, channel spacing = 100 khz. 5. rfsense performance is only valid from 0 to 85 c. rfsense should be disabled outside this temperature range. efr32bg12 blue gecko bluetooth ? low energy soc family data sheet electrical specifications silabs.com | building a more connected world. rev. 1.0 | 58
4.1.10.7 sub-ghz rf transmitter characteristics for 433 mhz band unless otherwise indicated, typical conditions are: t = 25 c, vregvdd = avdd = iovdd = 3.3 v, dvdd = rfvdd = pavdd. rfvdd and pavdd path is filtered using ferrites. crystal frequency=38.4 mhz. rf center frequency 433 mhz. table 4.26. sub-ghz rf transmitter characteristics for 433 mhz band parameter symbol test condition min typ max unit rf tuning frequency range f range 426 445 mhz maximum tx power 1 pout max pavdd connected to dcdc out- put, 14dbm output power 12.5 15.1 17.4 dbm pavdd connected to dcdc out- put, 10dbm output power 8.3 10.6 13.3 dbm minimum active tx power pot min -42 dbm output power step size pout step output power > 0 dbm 0.5 db output power variation vs supply, peak to peak, pout = 10dbm pout var_v at 10 dbm;1.8 v < v vregvdd < 3.3 v, pavdd = dc-dc output 1.7 db output power variation vs temperature, peak to peak, pout= 10dbm pout var_t -40 to +85c at 10dbm 0.5 1.2 db output power variation vs rf frequency, pout = 10dbm pout var_f 0.1 0.2 db spurious emissions of har- monics fcc, conducted measurement, 14dbm match, pavdd connected to dcdc output, test frequen- cy = 434 mhz spur harm_fcc in restricted bands, per fcc part 15.205 / 15.209 -47 -42 dbm in non-restricted bands, per fcc part 15.231 -26 -20 dbc spurious emissions out-of- band fcc, conducted measurement, 14dbm match, pavdd connected to dcdc output, test frequen- cy = 434 mhz spur oob_fcc in non-restricted bands, per fcc part 15.231 -26 -20 dbc in restricted bands (30-88 mhz), per fcc part 15.205 / 15.209 -52 -46 dbm in restricted bands (88-216 mhz), per fcc part 15.205 / 15.209 -61 -56 dbm in restricted bands (216-960 mhz), per fcc part 15.205 / 15.209 -58 -52 dbm in restricted bands (>960 mhz), per fcc part 15.205 / 15.209 -47 -42 dbm spurious emissions of har- monics etsi, conducted measurement, 14dbm match, pavdd connected to dcdc output, test frequen- cy = 434 mhz spur harm_etsi per etsi en 300-220, section 7.8.2.1 (frequencies below 1ghz) -42 -36 dbm per etsi en 300-220, section 7.8.2.1 (frequencies above 1ghz) -36 -30 dbm efr32bg12 blue gecko bluetooth ? low energy soc family data sheet electrical specifications silabs.com | building a more connected world. rev. 1.0 | 59
parameter symbol test condition min typ max unit spurious emissions out-of- band etsi, conducted measurement, 14dbm match, pavdd connected to dcdc output, test frequen- cy = 434 mhz spur oob_etsi per etsi en 300-220, section 7.8.2.1 (47-74 mhz, 87.5-118 mhz, 174-230 mhz, and 470-862 mhz) -60 -54 dbm per etsi en 300-220, section 7.8.2.1 (other frequencies below 1 ghz) -42 -36 dbm per etsi en 300-220, section 7.8.2.1 (frequencies above 1 ghz) -36 -30 dbm note: 1. supported transmit power levels are determined by the ordering part number (opn). transmit power ratings for all devices cov- ered in this datasheet can be found in the max tx power column of the ordering information table. . efr32bg12 blue gecko bluetooth ? low energy soc family data sheet electrical specifications silabs.com | building a more connected world. rev. 1.0 | 60
4.1.10.8 sub-ghz rf receiver characteristics for 433 mhz band unless otherwise indicated, typical conditions are: t = 25 c, vregvdd = avdd = iovdd = 3.3 v, dvdd = rfvdd = pavdd. rfvdd and pavdd path is filtered using ferrites. crystal frequency=38.4 mhz. rf center frequency 433 mhz. table 4.27. sub-ghz rf receiver characteristics for 433 mhz band parameter symbol test condition min typ max unit tuning frequency range f range 426 445 mhz max usable input level, 0.1% ber sat 2k4 desired is reference 2.4 kbps gfsk signal 2 10 dbm max usable input level, 0.1% ber sat 50k desired is reference 50 kbps gfsk signal 4 10 dbm sensitivity sens desired is reference 4.8 kbps ook signal 3 , 20% per -107.4 dbm desired is reference 100 kbps gfsk signal 1 , 0.1% ber -107.3 -105 dbm desired is reference 50 kbps gfsk signal 4 , 0.1% ber -110.3 -107.2 dbm desired is reference 2.4 kbps gfsk signal 2 , 0.1% ber -123.1 dbm desired is reference 9.6 kbps gfsk signal 5 , 1% per -112.6 -109 dbm level above which rfsense will trigger 6 rfsense trig cw at 433 mhz -28.1 dbm level below which rfsense will not trigger 6 rfsense thres cw at 433 mhz -50 dbm adjacent channel selectivity, interferer is cw at 1 channel-spacing c/i 1 desired is 4.8 kbps ook signal 3 at 3db above sensitivity level, 20% per 51.6 db desired is 100 kbps gfsk signal 1 at 3db above sensitivity level, 0.1% ber 35 44.1 db desired is 2.4 kbps gfsk signal 2 at 3db above sensitivity level, 0.1% ber 47 61.5 db desired is 50 kbps gfsk signal 4 at 3db above sensitivity level, 0.1% ber 45.6 53.1 db desired is 9.6 kbps 4gfsk sig- nal 5 at 3db above sensitivity level, 1% per 35.7 db efr32bg12 blue gecko bluetooth ? low energy soc family data sheet electrical specifications silabs.com | building a more connected world. rev. 1.0 | 61
parameter symbol test condition min typ max unit alternate channel selectivity, interferer is cw at 2 channel-spacing c/i 2 desired is 4.8 kbps ook signal 3 at 3db above sensitivity level, 20% per 57.8 db desired is 100 kbps gfsk signal 1 at 3db above sensitivity level, 0.1% ber 54.6 db desired is 2.4 kbps gfsk signal 2 at 3db above sensitivity level, 0.1% ber 62.4 db desired is 50 kbps gfsk signal 4 at 3db above sensitivity level, 0.1% ber 58.1 db desired is 9.6 kbps 4gfsk sig- nal 5 at 3db above sensitivity level, 1% per 50.6 db image rejection, interferer is cw at image frequency c/i image desired is 4.8 kbps ook signal 3 at 3db above sensitivity level, 20% per 46.5 db desired is 100 kbps gfsk signal 1 at 3db above sensitivity level, 0.1% ber 51.7 db desired is 2.4 kbps gfsk signal 2 at 3db above sensitivity level, 0.1% ber 57.5 db desired is 50 kbps gfsk signal 4 at 3db above sensitivity level, 0.1% ber 54.4 db desired is 9.6 kbps 4gfsk sig- nal 5 at 3db above sensitivity level, 1% per 48 db blocking selectivity, 0.1% ber. desired is 2.4 kbps gfsk signal 2 at 3db above sensitivity level c/i blocker interferer cw at desired 1 mhz 75.7 db interferer cw at desired 2 mhz 77.2 db interferer cw at desired 10 mhz 92 db intermod selectivity, 0.1% ber. cw interferers at 12.5 khz and 25 khz offsets c/i im desired is 2.4 kbps gfsk signal 2 at 3db above sensitivity level 58.8 db upper limit of input power range over which rssi reso- lution is maintained rssi max 5 dbm lower limit of input power range over which rssi reso- lution is maintained rssi min -98 dbm rssi resolution rssi res over rssi min to rssi max range 0.25 dbm max spurious emissions dur- ing active receive mode, per fcc part 15.109(a) spur rx_fcc 216-960 mhz -55 -49 dbm above 960 mhz -47 -41 dbm efr32bg12 blue gecko bluetooth ? low energy soc family data sheet electrical specifications silabs.com | building a more connected world. rev. 1.0 | 62
parameter symbol test condition min typ max unit max spurious emissions dur- ing active receive mode, per etsi 300-220 section 8.6 spur rx_etsi below 1000 mhz -63 -57 dbm above 1000 mhz -53 -47 dbm max spurious emissions dur- ing active receive mode, per arib std t67 section 3.3(5) spur rx_arib below 710 mhz, rbw=100khz -60 -54 dbm note: 1. definition of reference signal is 100 kbps 2gfsk, bt=0.5, f = 50 khz, rx channel bw = 198.024 khz, channel spacing = 200 khz. 2. definition of reference signal is 2.4 kbps 2gfsk, bt=0.5, f = 1.2 khz, rx channel bw = 4.798 khz, channel spacing = 12.5 khz. 3. definition of reference signal is 4.8 kbps ook, rx channel bw = 306.036 khz, channel spacing = 500 khz. 4. definition of reference signal is 50 kbps 2gfsk, bt=0.5, f = 25 khz, rx channel bw = 99.012 khz, channel spacing = 200 khz. 5. definition of reference signal is 9.6 kbps 4gfsk, bt=0.5, inner deviation = 0.8 khz, rx channel bw = 8.5 khz, channel spacing = 12.5 khz. 6. rfsense performance is only valid from 0 to 85 c. rfsense should be disabled outside this temperature range. efr32bg12 blue gecko bluetooth ? low energy soc family data sheet electrical specifications silabs.com | building a more connected world. rev. 1.0 | 63
4.1.10.9 sub-ghz rf transmitter characteristics for 315 mhz band unless otherwise indicated, typical conditions are: t = 25 c, vregvdd = avdd = iovdd = 3.3 v, dvdd = rfvdd = pavdd. rfvdd and pavdd path is filtered using ferrites. crystal frequency=38.4 mhz. rf center frequency 315 mhz. table 4.28. sub-ghz rf transmitter characteristics for 315 mhz band parameter symbol test condition min typ max unit rf tuning frequency range f range 195 358 mhz maximum tx power 1 pout max pavdd connected to dc-dc out- put 13.8 17.2 21.1 dbm minimum active tx power pout min -43.9 dbm output power step size pout step output power > 0 dbm 0.5 db output power variation vs supply pout var_v 1.8 v < v vregvdd < 3.3 v, pavdd = dc-dc output 1.8 db output power variation vs temperature pout var_t 0.5 1.2 db output power variation vs rf frequency pout var_f 0.1 0.7 db spurious emissions of har- monics at 14 dbm output power, conducted measure- ment, 14dbm match, pavdd connected to dc-dc output, test frequency = 315 mhz spur harm_fcc in restricted bands, per fcc part 15.205 / 15.209 -47 -42 dbm in non-restricted bands, per fcc part 15.231 -26 -20 dbc spurious emissions out-of- band at 14 dbm output pow- er, conducted measurement, 14dbm match, pavdd con- nected to dc-dc output, test frequency = 315 mhz spur oob_fcc in non-restricted bands, per fcc part 15.231 -26 -20 dbc in restricted bands (30-88 mhz), per fcc part 15.205 / 15.209 -52 -46 dbm in restricted bands (88-216 mhz), per fcc part 15.205 / 15.209 -61 -56 dbm in restricted bands (216-960 mhz), per fcc part 15.205 / 15.209 -58 -52 dbm in restricted bands (>960 mhz), per fcc part 15.205 / 15.209 -47 -42 dbm note: 1. supported transmit power levels are determined by the ordering part number (opn). transmit power ratings for all devices cov- ered in this datasheet can be found in the max tx power column of the ordering information table. . efr32bg12 blue gecko bluetooth ? low energy soc family data sheet electrical specifications silabs.com | building a more connected world. rev. 1.0 | 64
4.1.10.10 sub-ghz rf receiver characteristics for 315 mhz band unless otherwise indicated, typical conditions are: t = 25 c, vregvdd = avdd = iovdd = 3.3 v, dvdd = rfvdd = pavdd. rfvdd and pavdd path is filtered using ferrites. crystal frequency=38.4 mhz. rf center frequency 315 mhz. table 4.29. sub-ghz rf receiver characteristics for 315 mhz band parameter symbol test condition min typ max unit tuning frequency range f range 195 358 dbm max usable input level, 0.1% ber sat 2k4 desired is reference 2.4 kbps gfsk signal 1 10 dbm max usable input level, 0.1% ber sat 38k4 desired is reference 38.4 kbps gfsk signal 2 10 dbm sensitivity sens desired is reference 2.4 kbps gfsk signal 1 , 0.1% ber -123.2 -120.7 dbm desired is reference 38.4 kbps gfsk signal 2 , 0.1% ber -111.4 -108.6 dbm desired is reference 500 kbps gfsk signal 3 , 0.1% ber -98.8 -95.5 dbm level above which rfsense will trigger 4 rfsense trig cw at 315 mhz -28.1 dbm level below which rfsense will not trigger 4 rfsense thres cw at 315 mhz -50 dbm adjacent channel selectivity, interferer is cw at 1 channel-spacing c/i 1 desired is 2.4 kbps gfsk signal 1 at 3db above sensitivity level, 0.1% ber 54.1 63.6 db desired is 38.4kbps gfsk signal 2 at 3db above sensitivity level, 0.1% ber 49.9 db alternate channel selectivity, interferer is cw at 2 channel-spacing c/i 2 desired is 2.4kbps gfsk signal 1 at 3db above sensitivity level, 0.1% ber 64.2 db desired is 38.4kbps gfsk signal 2 at 3db above sensitivity level 2 , 0.1% ber 56.2 db image rejection, interferer is cw at image frequency c/i image desired is 2.4kbps gfsk signal 1 at 3db above sensitivity level, 0.1% ber 53 db desired is 38.4kbps gfsk signal 2 at 3db above sensitivity level, 0.1% ber 51.4 db blocking selectivity, 0.1% ber. desired is 2.4 kbps gfsk signal 1 at 3 db above sensitivity level c/i blocker interferer cw at desired 1 mhz 75 db interferer cw at desired 2 mhz 76.5 db interferer cw at desired 10 mhz 72.6 91.9 db upper limit of input power range over which rssi reso- lution is maintained rssi max 5 dbm efr32bg12 blue gecko bluetooth ? low energy soc family data sheet electrical specifications silabs.com | building a more connected world. rev. 1.0 | 65
parameter symbol test condition min typ max unit lower limit of input power range over which rssi reso- lution is maintained rssi min -98 dbm rssi resolution rssi res over rssi min to rssi max range 0.25 dbm max spurious emissions dur- ing active receive mode, per fcc part 15.109(a) spur rx_fcc 216-960 mhz -63 -57 dbm above 960mhz -53 -47 dbm note: 1. definition of reference signal is 2.4 kbps 2gfsk, bt=0.5, f = 1.2 khz, rx channel bw = 4.798 khz, channel spacing = 12.5 khz. 2. definition of reference signal is 38.4 kbps 2gfsk, bt=0.5, f = 20 khz, rx channel bw = 74.809 khz, channel spacing = 100 khz. 3. definition of reference signal is 500 kbps 2gfsk, bt=0.5, f = 125 khz, rx channel bw = 753.320 khz. 4. rfsense performance is only valid from 0 to 85 c. rfsense should be disabled outside this temperature range. efr32bg12 blue gecko bluetooth ? low energy soc family data sheet electrical specifications silabs.com | building a more connected world. rev. 1.0 | 66
4.1.10.11 sub-ghz rf transmitter characteristics for 169 mhz band unless otherwise indicated, typical conditions are: t = 25 c, vregvdd = avdd = iovdd = 3.3 v, dvdd = rfvdd = pavdd. rfvdd and pavdd path is filtered using ferrites. crystal frequency=38.4 mhz. rf center frequency 169 mhz. table 4.30. sub-ghz rf transmitter characteristics for 169 mhz band parameter symbol test condition min typ max unit rf tuning frequency range f range 169 170 mhz maximum tx power 1 pout max pavdd connected to external 3.3 v supply 18.1 19.7 22.4 dbm minimum active tx power pout min -42.6 dbm output power step size pout step output power > 0 dbm 0.5 db output power variation vs supply, peak to peak pout var_v 1.8 v < v vregvdd < 3.3 v, pavdd connected to external supply 4.8 5.0 db output power variation vs temperature, peak to peak pout var_t -40 to +85c at 20dbm 0.6 1.2 db spurious emissions of har- monics, conducted meas- urement, pavdd = 3.3v spur harm_etsi per etsi en 300-220, section 7.8.2.1 (47-74 mhz, 87.5-118 mhz, 174-230 mhz, and 470-862 mhz) -42 dbm per etsi en 300-220, section 7.8.2.1 (other frequencies below 1 ghz) 2 -38 dbm per etsi en 300-220, section 7.8.2.1 (frequencies above 1 ghz) 2 -36 dbm spurious emissions out-of- band, conducted measure- ment, pavdd = 3.3v spur oob_etsi per etsi en 300-220, section 7.8.2.1 (47-74 mhz, 87.5-118 mhz, 174-230 mhz, and 470-862 mhz) -42 -36 dbm per etsi en 300-220, section 7.8.2.1 (other frequencies below 1 ghz) -42 -36 dbm per etsi en 300-220, section 7.8.2.1 (frequencies above 1 ghz) -36 -30 dbm note: 1. supported transmit power levels are determined by the ordering part number (opn). transmit power ratings for all devices cov- ered in this datasheet can be found in the max tx power column of the ordering information table. . 2. typical value marginally passes specification. additional margin can be obtained by increasing the order of the harmonic filter. efr32bg12 blue gecko bluetooth ? low energy soc family data sheet electrical specifications silabs.com | building a more connected world. rev. 1.0 | 67
4.1.10.12 sub-ghz rf receiver characteristics for 169 mhz band unless otherwise indicated, typical conditions are: t = 25 c, vregvdd = avdd = iovdd = 3.3 v, dvdd = rfvdd = pavdd. rfvdd and pavdd path is filtered using ferrites. crystal frequency=38.4 mhz. rf center frequency 169 mhz. table 4.31. sub-ghz rf receiver characteristics for 169 mhz band parameter symbol test condition min typ max unit tuning frequency range f range 169 170 dbm max usable input level, 0.1% ber sat 2k4 desired is reference 2.4 kbps gfsk signal 1 10 dbm max usable input level, 0.1% ber sat 38k4 desired is reference 38.4 kbps gfsk signal 2 10 dbm sensitivity sens desired is reference 2.4 kbps gfsk signal 1 , 0.1% ber -124 dbm desired is reference 38.4 kbps gfsk signal 2 , 0.1% ber -112.2 -108 dbm desired is reference 500 kbps gfsk signal 3 , 0.1% ber -99.2 -96 dbm level above which rfsense will trigger 4 rfsense trig cw at 169 mhz -28.1 dbm level below which rfsense will not trigger 4 rfsense thres cw at 169 mhz -50 dbm adjacent channel selectivity, interferer is cw at 1 x channel-spacing c/i 1 desired is 2.4 kbps gfsk signal 1 at 3db above sensitivity level, 0.1% ber 64.8 db desired is 38.4kbps gfsk signal 1 at 3db above sensitivity level, 0.1% ber 43.3 51.4 db alternate channel selectivity, interferer is cw at 2 x channel-spacing c/i 2 desired is 2.4kbps gfsk signal 1 at 3db above sensitivity level, 0.1% ber 67.4 db desired is 38.4kbps gfsk signal 2 at 3db above sensitivity level, 0.1% ber 60.6 db image rejection, interferer is cw at image frequency c/i image desired is 2.4kbps gfsk signal 1 at 3db above sensitivity level, 0.1% ber 47.1 db desired is 38.4kbps gfsk signal 2 at 3db above sensitivity level, 0.1% ber 47.1 db blocking selectivity, 0.1% ber. desired is 2.4 kbps gfsk signal 1 at 3 db above sensitivity level c/i blocker interferer cw at desired 1 mhz 73.4 db interferer cw at desired 2 mhz 75 db interferer cw at desired 10 mhz 80 90.1 db upper limit of input power range over which rssi reso- lution is maintained rssi max 5 dbm efr32bg12 blue gecko bluetooth ? low energy soc family data sheet electrical specifications silabs.com | building a more connected world. rev. 1.0 | 68
parameter symbol test condition min typ max unit lower limit of input power range over which rssi reso- lution is maintained rssi min -98 dbm rssi resolution rssi res over rssi min to rssi max range 0.25 dbm max spurious emissions dur- ing active receive mode spur rx 30 mhz to 1 ghz -63 -57 dbm 1 ghz to 12 ghz -53 -47 dbm note: 1. definition of reference signal is 2.4 kbps 2gfsk, bt=0.5, f = 1.2 khz, rx channel bw = 4.798 khz, channel spacing = 12.5 khz. 2. definition of reference signal is 38.4 kbps 2gfsk, bt=0.5, f = 20 khz, rx channel bw = 74.809 khz, channel spacing = 100 khz. 3. definition of reference signal is 500 kbps 2gfsk, bt=0.5, f = 125 khz, rx channel bw = 753.320 khz. 4. rfsense performance is only valid from 0 to 85 c. rfsense should be disabled outside this temperature range. 4.1.11 modem table 4.32. modem parameter symbol test condition min typ max unit receive bandwidth bw rx configurable range with 38.4 mhz crystal 0.1 2530 khz if frequency f if configurable range with 38.4 mhz crystal. selected steps available. 150 1371 khz dsss symbol length sl dsss configurable in steps of 1 chip 2 32 chips dsss bits per symbol bps dsss configurable 1 4 bits/ symbol efr32bg12 blue gecko bluetooth ? low energy soc family data sheet electrical specifications silabs.com | building a more connected world. rev. 1.0 | 69
4.1.12 oscillators 4.1.12.1 low-frequency crystal oscillator (lfxo) table 4.33. low-frequency crystal oscillator (lfxo) parameter symbol test condition min typ max unit crystal frequency f lfxo 32.768 khz supported crystal equivalent series resistance (esr) esr lfxo 70 k? supported range of crystal load capacitance 1 c lfxo_cl 6 18 pf on-chip tuning cap range 2 c lfxo_t on each of lfxtal_n and lfxtal_p pins 8 40 pf on-chip tuning cap step size ss lfxo 0.25 pf current consumption after startup 3 i lfxo esr = 70 kohm, c l = 7 pf, gain 4 = 2, agc 4 = 1 273 na start- up time t lfxo esr = 70 kohm, c l = 7 pf, gain 4 = 2 308 ms note: 1. total load capacitance as seen by the crystal. 2. the effective load capacitance seen by the crystal will be c lfxo_t /2. this is because each xtal pin has a tuning cap and the two caps will be seen in series by the crystal. 3. block is supplied by avdd if anasw = 0, or dvdd if anasw=1 in emu_pwrctrl register. 4. in cmu_lfxoctrl register. efr32bg12 blue gecko bluetooth ? low energy soc family data sheet electrical specifications silabs.com | building a more connected world. rev. 1.0 | 70
4.1.12.2 high-frequency crystal oscillator (hfxo) table 4.34. high-frequency crystal oscillator (hfxo) parameter symbol test condition min typ max unit crystal frequency f hfxo 38 38.4 40 mhz supported crystal equivalent series resistance (esr) esr hfxo_38m4 crystal frequency 38.4 mhz 60 ? supported range of crystal load capacitance 1 c hfxo_cl 6 12 pf on-chip tuning cap range 2 c hfxo_t on each of hfxtal_n and hfxtal_p pins 9 20 25 pf on-chip tuning capacitance step ss hfxo 0.04 pf startup time t hfxo 38.4 mhz, esr = 50 ohm, c l = 10 pf 300 s frequency tolerance for the crystal ft hfxo 38.4 mhz, esr = 50 ohm, c l = 10 pf -40 40 ppm note: 1. total load capacitance as seen by the crystal. 2. the effective load capacitance seen by the crystal will be c hfxo_t /2. this is because each xtal pin has a tuning cap and the two caps will be seen in series by the crystal. 4.1.12.3 low-frequency rc oscillator (lfrco) table 4.35. low-frequency rc oscillator (lfrco) parameter symbol test condition min typ max unit oscillation frequency f lfrco envref 2 = 1 31.3 32.768 33.6 khz envref 2 = 0 31.3 32.768 33.4 khz startup time t lfrco 500 s current consumption 1 i lfrco envref = 1 in cmu_lfrcoctrl 370 na envref = 0 in cmu_lfrcoctrl 520 na note: 1. block is supplied by avdd if anasw = 0, or dvdd if anasw=1 in emu_pwrctrl register. 2. in cmu_lfrcoctrl register. efr32bg12 blue gecko bluetooth ? low energy soc family data sheet electrical specifications silabs.com | building a more connected world. rev. 1.0 | 71
4.1.12.4 high-frequency rc oscillator (hfrco) table 4.36. high-frequency rc oscillator (hfrco) parameter symbol test condition min typ max unit frequency accuracy f hfrco_acc at production calibrated frequen- cies, across supply voltage and temperature -2.5 2.5 % start-up time t hfrco f hfrco 19 mhz 300 ns 4 < f hfrco < 19 mhz 1 s f hfrco 4 mhz 2.5 s current consumption on all supplies i hfrco f hfrco = 38 mhz 244 265 a f hfrco = 32 mhz 204 222 a f hfrco = 26 mhz 173 188 a f hfrco = 19 mhz 143 156 a f hfrco = 16 mhz 123 136 a f hfrco = 13 mhz 110 124 a f hfrco = 7 mhz 85 94 a f hfrco = 4 mhz 32 37 a f hfrco = 2 mhz 28 34 a f hfrco = 1 mhz 26 31 a coarse trim step size (% of period) ss hfrco_coars e 0.8 % fine trim step size (% of pe- riod) ss hfrco_fine 0.1 % period jitter pj hfrco 0.2 % rms efr32bg12 blue gecko bluetooth ? low energy soc family data sheet electrical specifications silabs.com | building a more connected world. rev. 1.0 | 72
4.1.12.5 auxiliary high-frequency rc oscillator (auxhfrco) table 4.37. auxiliary high-frequency rc oscillator (auxhfrco) parameter symbol test condition min typ max unit frequency accuracy f auxhfrco_acc at production calibrated frequen- cies, across supply voltage and temperature -3 3 % start-up time t auxhfrco f auxhfrco 19 mhz 400 ns 4 < f auxhfrco < 19 mhz 1.4 s f auxhfrco 4 mhz 2.5 s current consumption on all supplies i auxhfrco f auxhfrco = 38 mhz 193 213 a f auxhfrco = 32 mhz 157 175 a f auxhfrco = 26 mhz 135 151 a f auxhfrco = 19 mhz 108 122 a f auxhfrco = 16 mhz 100 113 a f auxhfrco = 13 mhz 77 88 a f auxhfrco = 7 mhz 53 63 a f auxhfrco = 4 mhz 29 36 a f auxhfrco = 2 mhz 28 34 a f auxhfrco = 1 mhz 27 31 a coarse trim step size (% of period) ss auxhfr- co_coarse 0.8 % fine trim step size (% of pe- riod) ss auxhfr- co_fine 0.1 % period jitter pj auxhfrco 0.2 % rms 4.1.12.6 ultra-low frequency rc oscillator (ulfrco) table 4.38. ultra-low frequency rc oscillator (ulfrco) parameter symbol test condition min typ max unit oscillation frequency f ulfrco 0.95 1 1.07 khz efr32bg12 blue gecko bluetooth ? low energy soc family data sheet electrical specifications silabs.com | building a more connected world. rev. 1.0 | 73
4.1.13 flash memory characteristics 3 table 4.39. flash memory characteristics 3 parameter symbol test condition min typ max unit flash erase cycles before failure ec flash 10000 cycles flash data retention ret flash 10 years word (32-bit) programming time t w_prog burst write, 128 words, average time per word 20 24.4 30 s single word 60 68.4 80 s page erase time t perase 20 26.4 35 ms mass erase time 1 t merase 20 26.5 35 ms device erase time 2 t derase 69 100 ms page erase current 4 i erase 1.6 ma write current 4 i write 3.8 ma supply voltage during flash erase and write v flash 1.62 3.6 v note: 1. mass erase is issued by the cpu and erases all flash. 2. device erase is issued over the aap interface and erases all flash, sram, the lock bit (lb) page, and the user data page lock word (ulw). 3. flash data retention information is published in the quarterly quality and reliability report. 4. measured at 25 c. efr32bg12 blue gecko bluetooth ? low energy soc family data sheet electrical specifications silabs.com | building a more connected world. rev. 1.0 | 74
4.1.14 general-purpose i/o (gpio) table 4.40. general-purpose i/o (gpio) parameter symbol test condition min typ max unit input low voltage v il gpio pins iovdd*0.3 v input high voltage v ih gpio pins iovdd*0.7 v output high voltage relative to iovdd v oh sourcing 3 ma, iovdd 3 v, drivestrength 1 = weak iovdd*0.8 v sourcing 1.2 ma, iovdd 1.62 v, drivestrength 1 = weak iovdd*0.6 v sourcing 20 ma, iovdd 3 v, drivestrength 1 = strong iovdd*0.8 v sourcing 8 ma, iovdd 1.62 v, drivestrength 1 = strong iovdd*0.6 v output low voltage relative to iovdd v ol sinking 3 ma, iovdd 3 v, drivestrength 1 = weak iovdd*0.2 v sinking 1.2 ma, iovdd 1.62 v, drivestrength 1 = weak iovdd*0.4 v sinking 20 ma, iovdd 3 v, drivestrength 1 = strong iovdd*0.2 v sinking 8 ma, iovdd 1.62 v, drivestrength 1 = strong iovdd*0.4 v input leakage current i ioleak all gpio except lfxo pins, gpio iovdd 0.1 30 na lfxo pins, gpio iovdd 0.1 50 na input leakage current on 5vtol pads above iovdd i 5vtolleak iovdd < gpio iovdd + 2 v 3.3 15 a i/o pin pull-up/pull-down re- sistor r pud 30 40 65 k? pulse width of pulses re- moved by the glitch suppres- sion filter t ioglitch 15 25 45 ns efr32bg12 blue gecko bluetooth ? low energy soc family data sheet electrical specifications silabs.com | building a more connected world. rev. 1.0 | 75
parameter symbol test condition min typ max unit output fall time, from 70% to 30% of v io t ioof c l = 50 pf, drivestrength 1 = strong, slewrate 1 = 0x6 1.8 ns c l = 50 pf, drivestrength 1 = weak, slewrate 1 = 0x6 4.5 ns output rise time, from 30% to 70% of v io t ioor c l = 50 pf, drivestrength 1 = strong, slewrate = 0x6 1 2.2 ns c l = 50 pf, drivestrength 1 = weak, slewrate 1 = 0x6 7.4 ns note: 1. in gpio_pn_ctrl register. efr32bg12 blue gecko bluetooth ? low energy soc family data sheet electrical specifications silabs.com | building a more connected world. rev. 1.0 | 76
4.1.15 voltage monitor (vmon) table 4.41. voltage monitor (vmon) parameter symbol test condition min typ max unit supply current (including i_sense) i vmon in em0 or em1, 1 supply moni- tored 6.3 10 a in em0 or em1, 4 supplies moni- tored 12.5 17 a in em2, em3 or em4, 1 supply monitored and above threshol 62 na in em2, em3 or em4, 1 supply monitored and below threshold 62 na in em2, em3 or em4, 4 supplies monitored and all above threshold 99 na in em2, em3 or em4, 4 supplies monitored and all below threshold 99 na loading of monitored supply i sense in em0 or em1 2 a in em2, em3 or em4 2 na threshold range v vmon_range 1.62 3.4 v threshold step size n vmon_stesp coarse 200 mv fine 20 mv response time t vmon_res supply drops at 1v/s rate 460 ns hysteresis v vmon_hyst 26 mv efr32bg12 blue gecko bluetooth ? low energy soc family data sheet electrical specifications silabs.com | building a more connected world. rev. 1.0 | 77
4.1.16 analog to digital converter (adc) table 4.42. analog to digital converter (adc) parameter symbol test condition min typ max unit resolution v resolution 6 12 bits input voltage range v adcin single ended v fs v differential -v fs /2 v fs /2 v input range of external refer- ence voltage, single ended and differential v adcrefin_p 1 v avdd v power supply rejection 2 psrr adc at dc 80 db analog input common mode rejection ratio cmrr adc at dc 80 db current from all supplies, us- ing internal reference buffer. continous operation. war- mupmode 4 = keepadc- warm i adc_conti- nous_lp 1 msps / 16 mhz adcclk, bia- sprog = 0, gpbiasacc = 1 3 270 315 a 250 ksps / 4 mhz adcclk, bia- sprog = 6, gpbiasacc = 1 3 125 a 62.5 ksps / 1 mhz adcclk, bia- sprog = 15, gpbiasacc = 1 3 80 a current from all supplies, us- ing internal reference buffer. duty-cycled operation. war- mupmode 4 = normal i adc_normal_lp 35 ksps / 16 mhz adcclk, bia- sprog = 0, gpbiasacc = 1 3 45 a 5 ksps / 16 mhz adcclk bia- sprog = 0, gpbiasacc = 1 3 8 a current from all supplies, us- ing internal reference buffer. duty-cycled operation. awarmupmode 4 = keep- instandby or keepin- slowacc i adc_stand- by_lp 125 ksps / 16 mhz adcclk, bia- sprog = 0, gpbiasacc = 1 3 105 a 35 ksps / 16 mhz adcclk, bia- sprog = 0, gpbiasacc = 1 3 70 a current from all supplies, us- ing internal reference buffer. continous operation. war- mupmode 4 = keepadc- warm i adc_conti- nous_hp 1 msps / 16 mhz adcclk, bia- sprog = 0, gpbiasacc = 0 3 325 a 250 ksps / 4 mhz adcclk, bia- sprog = 6, gpbiasacc = 0 3 175 a 62.5 ksps / 1 mhz adcclk, bia- sprog = 15, gpbiasacc = 0 3 125 a current from all supplies, us- ing internal reference buffer. duty-cycled operation. war- mupmode 4 = normal i adc_normal_hp 35 ksps / 16 mhz adcclk, bia- sprog = 0, gpbiasacc = 0 3 85 a 5 ksps / 16 mhz adcclk bia- sprog = 0, gpbiasacc = 0 3 16 a current from all supplies, us- ing internal reference buffer. duty-cycled operation. awarmupmode 4 = keep- instandby or keepin- slowacc i adc_stand- by_hp 125 ksps / 16 mhz adcclk, bia- sprog = 0, gpbiasacc = 0 3 160 a 35 ksps / 16 mhz adcclk, bia- sprog = 0, gpbiasacc = 0 3 125 a current from hfperclk i adc_clk hfperclk = 16 mhz 160 a efr32bg12 blue gecko bluetooth ? low energy soc family data sheet electrical specifications silabs.com | building a more connected world. rev. 1.0 | 78
parameter symbol test condition min typ max unit adc clock frequency f adcclk 16 mhz throughput rate f adcrate 1 msps conversion time 1 t adcconv 6 bit 7 cycles 8 bit 9 cycles 12 bit 13 cycles startup time of reference generator and adc core t adcstart warmupmode 4 = normal 5 s warmupmode 4 = keepin- standby 2 s warmupmode 4 = keepinslo- wacc 1 s sndr at 1msps and f in = 10khz sndr adc internal reference 6 , differential measurement 58 67 db external reference 5 , differential measurement 68 db spurious-free dynamic range (sfdr) sfdr adc 1 msamples/s, 10 khz full-scale sine wave 75 db differential non-linearity (dnl) dnl adc 12 bit resolution, no missing co- des -1 2 lsb integral non-linearity (inl), end point method inl adc 12 bit resolution -6 6 lsb offset error v adcoffseterr -3 0 3 lsb gain error in adc v adcgain using internal reference -0.2 3.5 % using external reference -1 % temperature sensor slope v ts_slope -1.84 mv/c note: 1. derived from adcclk. 2. psrr is referenced to avdd when anasw=0 and to dvdd when anasw=1 in emu_pwrctrl. 3. in adcn_biasprog register. 4. in adcn_cntl register. 5. external reference is 1.25 v applied externally to adcnextrefp, with the selection conf in the singlectrl_ref or scanctrl_ref register field and vrefp in the singlectrlx_vrefsel or scanctrlx_vrefsel field. the differential input range with this configuration is 1.25 v. 6. internal reference option used corresponds to selection 2v5 in the singlectrl_ref or scanctrl_ref register field. the differential input range with this configuration is 1.25 v. typical value is characterized using full-scale sine wave input. minimum value is production-tested using sine wave input at 1.5 db lower than full scale. efr32bg12 blue gecko bluetooth ? low energy soc family data sheet electrical specifications silabs.com | building a more connected world. rev. 1.0 | 79
4.1.17 analog comparator (acmp) table 4.43. analog comparator (acmp) parameter symbol test condition min typ max unit input voltage range v acmpin acmpvdd = acmpn_ctrl_pwrsel 1 v acmpvdd v supply voltage v acmpvdd biasprog 4 0x10 or full- bias 4 = 0 1.8 v vregvdd_ max v 0x10 < biasprog 4 0x20 and fullbias 4 = 1 2.1 v vregvdd_ max v active current not including voltage reference 2 i acmp biasprog 4 = 1, fullbias 4 = 0 50 na biasprog 4 = 0x10, fullbias 4 = 0 306 na biasprog 4 = 0x02, fullbias 4 = 1 6.5 a biasprog 4 = 0x20, fullbias 4 = 1 75 92 a current consumption of inter- nal voltage reference 2 i acmpref vlp selected as input using 2.5 v reference / 4 (0.625 v) 50 na vlp selected as input using vdd 20 na vbdiv selected as input using 1.25 v reference / 1 4.1 a vadiv selected as input using vdd/1 2.4 a efr32bg12 blue gecko bluetooth ? low energy soc family data sheet electrical specifications silabs.com | building a more connected world. rev. 1.0 | 80
parameter symbol test condition min typ max unit hysteresis (v cm = 1.25 v, biasprog 4 = 0x10, full- bias 4 = 1) v acmphyst hystsel 5 = hyst0 -3 0 3 mv hystsel 5 = hyst1 5 18 27 mv hystsel 5 = hyst2 12 33 50 mv hystsel 5 = hyst3 17 46 65 mv hystsel 5 = hyst4 23 57 82 mv hystsel 5 = hyst5 26 68 98 mv hystsel 5 = hyst6 30 79 130 mv hystsel 5 = hyst7 34 90 150 mv hystsel 5 = hyst8 -3 0 3 mv hystsel 5 = hyst9 -27 -18 -5 mv hystsel 5 = hyst10 -50 -33 -12 mv hystsel 5 = hyst11 -65 -45 -17 mv hystsel 5 = hyst12 -82 -57 -23 mv hystsel 5 = hyst13 -98 -67 -26 mv hystsel 5 = hyst14 -130 -78 -30 mv hystsel 5 = hyst15 -150 -88 -34 mv comparator delay 3 t acmpdelay biasprog 4 = 1, fullbias 4 = 0 30 s biasprog 4 = 0x10, fullbias 4 = 0 3.7 s biasprog 4 = 0x02, fullbias 4 = 1 360 ns biasprog 4 = 0x20, fullbias 4 = 1 35 ns offset voltage v acmpoffset biasprog 4 =0x10, fullbias 4 = 1 -35 35 mv reference voltage v acmpref internal 1.25 v reference 1 1.25 1.47 v internal 2.5 v reference 2 2.5 2.8 v capacitive sense internal re- sistance r csres csressel 6 = 0 inf k? csressel 6 = 1 15 k? csressel 6 = 2 27 k? csressel 6 = 3 39 k? csressel 6 = 4 51 k? csressel 6 = 5 100 k? csressel 6 = 6 162 k? csressel 6 = 7 235 k? efr32bg12 blue gecko bluetooth ? low energy soc family data sheet electrical specifications silabs.com | building a more connected world. rev. 1.0 | 81
parameter symbol test condition min typ max unit note: 1. acmpvdd is a supply chosen by the setting in acmpn_ctrl_pwrsel and may be iovdd, avdd or dvdd. 2. the total acmp current is the sum of the contributions from the acmp and its internal voltage reference. i acmptotal = i acmp + i acmpref . 3. 100 mv differential drive. 4. in acmpn_ctrl register. 5. in acmpn_hysteresis register. 6. in acmpn_inputsel register. efr32bg12 blue gecko bluetooth ? low energy soc family data sheet electrical specifications silabs.com | building a more connected world. rev. 1.0 | 82
4.1.18 digital to analog converter (vdac) drivestrength = 2 unless otherwise specified. primary vdac output. table 4.44. digital to analog converter (vdac) parameter symbol test condition min typ max unit output voltage v dacout single-ended 0 v vref v differential 2 -v vref v vref v current consumption includ- ing references (2 channels) 1 i dac 500 ksps, 12-bit, drives- trength = 2, refsel = 4 396 a 44.1 ksps, 12-bit, drives- trength = 1, refsel = 4 72 a 200 hz refresh rate, 12-bit sam- ple-off mode in em2, drives- trength = 2, bgrreqtime = 1, em2refentime = 9, refsel = 4, settletime = 0x0a, war- muptime = 0x02 1.2 a current from hfperclk 4 i dac_clk 5.8 a/mhz sample rate sr dac 500 ksps dac clock frequency f dac 1 mhz conversion time t dacconv f dac = 1mhz 2 s settling time t dacsettle 50% fs step settling to 5 lsb 2.5 s startup time t dacstartup enable to 90% fs output, settling to 10 lsb 12 s output impedance r out drivestrength = 2, 0.4 v v out v opa - 0.4 v, -8 ma < i out < 8 ma, full supply range 2 ? drivestrength = 0 or 1, 0.4 v v out v opa - 0.4 v, -400 a < i out < 400 a, full supply range 2 ? drivestrength = 2, 0.1 v v out v opa - 0.1 v, -2 ma < i out < 2 ma, full supply range 2 ? drivestrength = 0 or 1, 0.1 v v out v opa - 0.1 v, -100 a < i out < 100 a, full supply range 2 ? power supply rejection ratio 6 psrr vout = 50% fs. dc 65.5 db efr32bg12 blue gecko bluetooth ? low energy soc family data sheet electrical specifications silabs.com | building a more connected world. rev. 1.0 | 83
parameter symbol test condition min typ max unit signal to noise and distortion ratio (1 khz sine wave), noise band limited to 250 khz sndr dac 500 ksps, single-ended, internal 1.25v reference 60.4 db 500 ksps, single-ended, internal 2.5v reference 61.6 db 500 ksps, single-ended, 3.3v vdd reference 64.0 db 500 ksps, differential, internal 1.25v reference 63.3 db 500 ksps, differential, internal 2.5v reference 64.4 db 500 ksps, differential, 3.3v vdd reference 65.8 db signal to noise and distortion ratio (1 khz sine wave), noise band limited to 22 khz sndr dac_band 500 ksps, single-ended, internal 1.25v reference 65.3 db 500 ksps, single-ended, internal 2.5v reference 66.7 db 500 ksps, single-ended, 3.3v vdd reference 70.0 db 500 ksps, differential, internal 1.25v reference 67.8 db 500 ksps, differential, internal 2.5v reference 69.0 db 500 ksps, differential, 3.3v vdd reference 68.5 db total harmonic distortion thd 70.2 db differential non-linearity 3 dnl dac -0.99 1 lsb intergral non-linearity inl dac -4 4 lsb offset error 5 v offset t = 25 c -8 8 mv across operating temperature range -25 25 mv gain error 5 v gain t = 25 c, low-noise internal ref- erence (refsel = 1v25ln or 2v5ln) -1.5 1.5 % t = 25 c, internal reference (re- fsel = 1v25 or 2v5) -5 5 % t = 25 c, external reference (refsel = vdd or ext) -1.5 1.5 % across operating temperature range, low-noise internal refer- ence (refsel = 1v25ln or 2v5ln) -3.5 3.5 % across operating temperature range, internal reference (re- fsel = 1v25 or 2v5) -7.5 7.5 % across operating temperature range, external reference (re- fsel = vdd or ext) -1.5 1.5 % efr32bg12 blue gecko bluetooth ? low energy soc family data sheet electrical specifications silabs.com | building a more connected world. rev. 1.0 | 84
parameter symbol test condition min typ max unit external load capactiance, outscale=0 c load 75 pf note: 1. supply current specifications are for vdac circuitry operating with static output only and do not include current required to drive the load. 2. in differential mode, the output is defined as the difference between two single-ended outputs. absolute voltage on each output is limited to the single-ended range. 3. entire range is monotonic and has no missing codes. 4. current from hfperclk is dependent on hfperclk frequency. this current contributes to the total supply current used when the clock to the dac module is enabled in the cmu. 5. gain is calculated by measuring the slope from 10% to 90% of full scale. offset is calculated by comparing actual vdac output at 10% of full scale to ideal vdac output at 10% of full scale with the measured gain. 6. psrr calculated as 20 * log 10 (vdd / v out ), vdac output at 90% of full scale efr32bg12 blue gecko bluetooth ? low energy soc family data sheet electrical specifications silabs.com | building a more connected world. rev. 1.0 | 85
4.1.19 current digital to analog converter (idac) table 4.45. current digital to analog converter (idac) parameter symbol test condition min typ max unit number of ranges n idac_ranges 4 - output current i idac_out rangsel 1 = range0 0.05 1.6 a rangsel 1 = range1 1.6 4.7 a rangsel 1 = range2 0.5 16 a rangsel 1 = range3 2 64 a linear steps within each range n idac_steps 32 step size ss idac rangsel 1 = range0 50 na rangsel 1 = range1 100 na rangsel 1 = range2 500 na rangsel 1 = range3 2 a total accuracy, stepsel 1 = 0x80 acc idac em0 or em1, avdd=3.3 v, t = 25 c -3 3 % em0 or em1, across operating temperature range -18 22 % em2 or em3, source mode, rangsel 1 = range0, avdd=3.3 v, t = 25 c -2 % em2 or em3, source mode, rangsel 1 = range1, avdd=3.3 v, t = 25 c -1.7 % em2 or em3, source mode, rangsel 1 = range2, avdd=3.3 v, t = 25 c -0.8 % em2 or em3, source mode, rangsel 1 = range3, avdd=3.3 v, t = 25 c -0.5 % em2 or em3, sink mode, rang- sel 1 = range0, avdd=3.3 v, t = 25 c -0.7 % em2 or em3, sink mode, rang- sel 1 = range1, avdd=3.3 v, t = 25 c -0.6 % em2 or em3, sink mode, rang- sel 1 = range2, avdd=3.3 v, t = 25 c -0.5 % em2 or em3, sink mode, rang- sel 1 = range3, avdd=3.3 v, t = 25 c -0.5 % start up time t idac_su output within 1% of steady state value 5 s efr32bg12 blue gecko bluetooth ? low energy soc family data sheet electrical specifications silabs.com | building a more connected world. rev. 1.0 | 86
parameter symbol test condition min typ max unit settling time, (output settled within 1% of steady state val- ue), t idac_settle range setting is changed 5 s step value is changed 1 s current consumption 2 i idac em0 or em1 source mode, ex- cluding output current, across op- erating temperature range 11 18 a em0 or em1 sink mode, exclud- ing output current, across operat- ing temperature range 13 21 a em2 or em3 source mode, ex- cluding output current, t = 25 c 0.023 a em2 or em3 sink mode, exclud- ing output current, t = 25 c 0.041 a em2 or em3 source mode, ex- cluding output current, t 85 c 11 a em2 or em3 sink mode, exclud- ing output current, t 85 c 13 a output voltage compliance in source mode, source current change relative to current sourced at 0 v i comp_src rangesel1=0, output voltage = min(v iovdd , v avdd 2 -100 mv) 0.11 % rangesel1=1, output voltage = min(v iovdd , v avdd 2 -100 mv) 0.06 % rangesel1=2, output voltage = min(v iovdd , v avdd 2 -150 mv) 0.04 % rangesel1=3, output voltage = min(v iovdd , v avdd 2 -250 mv) 0.03 % output voltage compliance in sink mode, sink current change relative to current sunk at iovdd i comp_sink rangesel1=0, output voltage = 100 mv 0.12 % rangesel1=1, output voltage = 100 mv 0.05 % rangesel1=2, output voltage = 150 mv 0.04 % rangesel1=3, output voltage = 250 mv 0.03 % note: 1. in idac_curprog register. 2. the idac is supplied by either avdd, dvdd, or iovdd based on the setting of anasw in the emu_pwrctrl register and pwrsel in the idac_ctrl register. setting pwrsel to 1 selects iovdd. with pwrsel cleared to 0, anasw selects be- tween avdd (0) and dvdd (1). efr32bg12 blue gecko bluetooth ? low energy soc family data sheet electrical specifications silabs.com | building a more connected world. rev. 1.0 | 87
4.1.20 capacitive sense (csen) table 4.46. capacitive sense (csen) parameter symbol test condition min typ max unit single conversion time (1x accumulation) t cnv 12-bit sar conversions 20.2 s 16-bit sar conversions 26.4 s delta modulation conversion (sin- gle comparison) 1.55 s maximum external capactive load c extmax cs0cg=7 (gain = 1x), including routing parasitics 68 pf cs0cg=0 (gain = 10x), including routing parasitics 680 pf maximum external series im- pedance r extmax 1 k? supply current, em2 bonded conversions, warmup- mode=normal, war- mupcnt=0 i csen_bond 12-bit sar conversions, 20 ms conversion rate, cs0cg=7 (gain = 1x), 10 channels bonded (total capacitance of 330 pf) 1 326 na delta modulation conversions, 20 ms conversion rate, cs0cg=7 (gain = 1x), 10 channels bonded (total capacitance of 330 pf) 1 226 na 12-bit sar conversions, 200 ms conversion rate, cs0cg=7 (gain = 1x), 10 channels bonded (total capacitance of 330 pf) 1 33 na delta modulation conversions, 200 ms conversion rate, cs0cg=7 (gain = 1x), 10 chan- nels bonded (total capacitance of 330 pf) 1 25 na supply current, em2 scan conversions, warmup- mode=normal, war- mupcnt=0 i csen_em2 12-bit sar conversions, 20 ms scan rate, cs0cg=0 (gain = 10x), 8 samples per scan 1 690 na delta modulation conversions, 20 ms scan rate, 8 comparisons per sample (dmcr = 1, dmr = 2), cs0cg=0 (gain = 10x), 8 sam- ples per scan 1 515 na 12-bit sar conversions, 200 ms scan rate, cs0cg=0 (gain = 10x), 8 samples per scan 1 79 na delta modulation conversions, 200 ms scan rate, 8 comparisons per sample (dmcr = 1, dmr = 2), cs0cg=0 (gain = 10x), 8 samples per scan 1 57 na efr32bg12 blue gecko bluetooth ? low energy soc family data sheet electrical specifications silabs.com | building a more connected world. rev. 1.0 | 88
parameter symbol test condition min typ max unit supply current, continuous conversions, warmup- mode=keepcsenwarm i csen_active sar or delta modulation conver- sions of 33 pf capacitor, cs0cg=0 (gain = 10x), always on 90.5 a hfperclk supply current i csen_hfperclk current contribution from hfperclk when clock to csen block is enabled. 2.25 a/mhz note: 1. current is specified with a total external capacitance of 33 pf per channel. average current is dependent on how long the module is actively sampling channels within the scan period, and scales with the number of samples acquired. supply current for a specif- ic application can be estimated by multiplying the current per sample by the total number of samples per period (total_current = single_sample_current * (number_of_channels * accumulation)). efr32bg12 blue gecko bluetooth ? low energy soc family data sheet electrical specifications silabs.com | building a more connected world. rev. 1.0 | 89
4.1.21 operational amplifier (opamp) unless otherwise indicated, specified conditions are: non-inverting input configuration, vdd = 3.3 v, drivestrength = 2, main- outen = 1, c load = 75 pf with outscale = 0, or c load = 37.5 pf with outscale = 1. unit gain buffer and 3x-gain connection as specified in table footnotes 8 1 . table 4.47. operational amplifier (opamp) parameter symbol test condition min typ max unit supply voltage v opa hcmdis = 0, rail-to-rail input range 2 3.8 v hcmdis = 1 1.62 3.8 v input voltage v in hcmdis = 0, rail-to-rail input range v vss v opa v hcmdis = 1 v vss v opa -1.2 v input impedance r in 100 m? output voltage v out v vss v opa v load capacitance 2 c load outscale = 0 75 pf outscale = 1 37.5 pf output impedance r out drivestrength = 2 or 3, 0.4 v v out v opa - 0.4 v, -8 ma < i out < 8 ma, buffer connection, full supply range 0.25 ? drivestrength = 0 or 1, 0.4 v v out v opa - 0.4 v, -400 a < i out < 400 a, buffer connection, full supply range 0.6 ? drivestrength = 2 or 3, 0.1 v v out v opa - 0.1 v, -2 ma < i out < 2 ma, buffer connection, full supply range 0.4 ? drivestrength = 0 or 1, 0.1 v v out v opa - 0.1 v, -100 a < i out < 100 a, buffer connection, full supply range 1 ? internal closed-loop gain g cl buffer connection 0.99 1 1.01 - 3x gain connection 2.93 2.99 3.05 - 16x gain connection 15.07 15.7 16.33 - active current 4 i opa drivestrength = 3, out- scale = 0 580 a drivestrength = 2, out- scale = 0 176 a drivestrength = 1, out- scale = 0 13 a drivestrength = 0, out- scale = 0 4.7 a efr32bg12 blue gecko bluetooth ? low energy soc family data sheet electrical specifications silabs.com | building a more connected world. rev. 1.0 | 90
parameter symbol test condition min typ max unit open-loop gain g ol drivestrength = 3 135 db drivestrength = 2 137 db drivestrength = 1 121 db drivestrength = 0 109 db loop unit-gain frequency 7 ugf drivestrength = 3, buffer connection 3.38 mhz drivestrength = 2, buffer connection 0.9 mhz drivestrength = 1, buffer connection 132 khz drivestrength = 0, buffer connection 34 khz drivestrength = 3, 3x gain connection 2.57 mhz drivestrength = 2, 3x gain connection 0.71 mhz drivestrength = 1, 3x gain connection 113 khz drivestrength = 0, 3x gain connection 28 khz phase margin pm drivestrength = 3, buffer connection 67 drivestrength = 2, buffer connection 69 drivestrength = 1, buffer connection 63 drivestrength = 0, buffer connection 68 output voltage noise n out drivestrength = 3, buffer connection, 10 hz - 10 mhz 146 vrms drivestrength = 2, buffer connection, 10 hz - 10 mhz 163 vrms drivestrength = 1, buffer connection, 10 hz - 1 mhz 170 vrms drivestrength = 0, buffer connection, 10 hz - 1 mhz 176 vrms drivestrength = 3, 3x gain connection, 10 hz - 10 mhz 313 vrms drivestrength = 2, 3x gain connection, 10 hz - 10 mhz 271 vrms drivestrength = 1, 3x gain connection, 10 hz - 1 mhz 247 vrms drivestrength = 0, 3x gain connection, 10 hz - 1 mhz 245 vrms efr32bg12 blue gecko bluetooth ? low energy soc family data sheet electrical specifications silabs.com | building a more connected world. rev. 1.0 | 91
parameter symbol test condition min typ max unit slew rate 5 sr drivestrength = 3, incbw=1 3 4.7 v/s drivestrength = 3, incbw=0 1.5 v/s drivestrength = 2, incbw=1 3 1.27 v/s drivestrength = 2, incbw=0 0.42 v/s drivestrength = 1, incbw=1 3 0.17 v/s drivestrength = 1, incbw=0 0.058 v/s drivestrength = 0, incbw=1 3 0.044 v/s drivestrength = 0, incbw=0 0.015 v/s startup time 6 t start drivestrength = 2 12 s input offset voltage v osi drivestrength = 2 or 3, t = 25 c -2 2 mv drivestrength = 1 or 0, t = 25 c -2 2 mv drivestrength = 2 or 3, across operating temperature range -12 12 mv drivestrength = 1 or 0, across operating temperature range -30 30 mv dc power supply rejection ratio 9 psrr dc input referred 70 db dc common-mode rejection ratio 9 cmrr dc input referred 70 db total harmonic distortion thd opa drivestrength = 2, 3x gain connection, 1 khz, v out = 0.1 v to v opa - 0.1 v 90 db drivestrength = 0, 3x gain connection, 0.1 khz, v out = 0.1 v to v opa - 0.1 v 90 db efr32bg12 blue gecko bluetooth ? low energy soc family data sheet electrical specifications silabs.com | building a more connected world. rev. 1.0 | 92
parameter symbol test condition min typ max unit note: 1. specified configuration for 3x-gain configuration is: incbw = 1, hcmdis = 1, resinsel = vss, v input = 0.5 v, v output = 1.5 v. nominal voltage gain is 3. 2. if the maximum c load is exceeded, an isolation resistor is required for stability. see an0038 for more information. 3. when incbw is set to 1 the opamp bandwidth is increased. this is allowed only when the non-inverting close-loop gain is 3, or the opamp may not be stable. 4. current into the load resistor is excluded. when the opamp is connected with closed-loop gain > 1, there will be extra current to drive the resistor feedback network. the internal resistor feedback network has total resistance of 143.5 kohm, which will cause another ~10 a current when the opamp drives 1.5 v between output and ground. 5. step between 0.2v and v opa -0.2v, 10%-90% rising/falling range. 6. from enable to output settled. in sample-and-off mode, rc network after opamp will contribute extra delay. settling error < 1mv. 7. in unit gain connection, ugf is the gain-bandwidth product of the opamp. in 3x gain connection, ugf is the gain-bandwidth product of the opamp and 1/3 attenuation of the feedback network. 8. specified configuration for unit gain buffer configuration is: incbw = 0, hcmdis = 0, resinsel = disable. v input = 0.5 v, v output = 0.5 v. 9. when hcmdis=1 and input common mode transitions the region from v opa -1.4v to v opa -1v, input offset will change. psrr and cmrr specifications do not apply to this transition region. 4.1.22 pulse counter (pcnt) table 4.48. pulse counter (pcnt) parameter symbol test condition min typ max unit input frequency f in asynchronous single and quad- rature modes 20 mhz sampled modes with debounce filter set to 0. 8 khz 4.1.23 analog port (aport) table 4.49. analog port (aport) parameter symbol test condition min typ max unit supply current 2 1 i aport operation in em0/em1 7 a operation in em2/em3 915 na note: 1. specified current is for continuous aport operation. in applications where the aport is not requested continuously (e.g. peri- odic acmp requests from lesense in em2), the average current requirements can be estimated by mutiplying the duty cycle of the requests by the specified continuous current number. 2. supply current increase that occurs when an analog peripheral requests access to aport. this current is not included in repor- ted module currents. additional peripherals requesting access to aport do not incur further current. efr32bg12 blue gecko bluetooth ? low energy soc family data sheet electrical specifications silabs.com | building a more connected world. rev. 1.0 | 93
4.1.24 i2c 4.1.24.1 i2c standard-mode (sm) 1 table 4.50. i2c standard-mode (sm) 1 parameter symbol test condition min typ max unit scl clock frequency 2 f scl 0 100 khz scl clock low time t low 4.7 s scl clock high time t high 4 s sda set-up time t su_dat 250 ns sda hold time 3 t hd_dat 100 3450 ns repeated start condition set-up time t su_sta 4.7 s (repeated) start condition hold time t hd_sta 4 s stop condition set-up time t su_sto 4 s bus free time between a stop and start condition t buf 4.7 s note: 1. for clhr set to 0 in the i2cn_ctrl register. 2. for the minimum hfperclk frequency required in standard-mode, refer to the i2c chapter in the reference manual. 3. the maximum sda hold time (t hd_dat ) needs to be met only when the device does not stretch the low time of scl (t low ). efr32bg12 blue gecko bluetooth ? low energy soc family data sheet electrical specifications silabs.com | building a more connected world. rev. 1.0 | 94
4.1.24.2 i2c fast-mode (fm) 1 table 4.51. i2c fast-mode (fm) 1 parameter symbol test condition min typ max unit scl clock frequency 2 f scl 0 400 khz scl clock low time t low 1.3 s scl clock high time t high 0.6 s sda set-up time t su_dat 100 ns sda hold time 3 t hd_dat 100 900 ns repeated start condition set-up time t su_sta 0.6 s (repeated) start condition hold time t hd_sta 0.6 s stop condition set-up time t su_sto 0.6 s bus free time between a stop and start condition t buf 1.3 s note: 1. for clhr set to 1 in the i2cn_ctrl register. 2. for the minimum hfperclk frequency required in fast-mode, refer to the i2c chapter in the reference manual. 3. the maximum sda hold time (t hd,dat ) needs to be met only when the device does not stretch the low time of scl (t low ). efr32bg12 blue gecko bluetooth ? low energy soc family data sheet electrical specifications silabs.com | building a more connected world. rev. 1.0 | 95
4.1.24.3 i2c fast-mode plus (fm+) 1 table 4.52. i2c fast-mode plus (fm+) 1 parameter symbol test condition min typ max unit scl clock frequency 2 f scl 0 1000 khz scl clock low time t low 0.5 s scl clock high time t high 0.26 s sda set-up time t su_dat 50 ns sda hold time t hd_dat 100 ns repeated start condition set-up time t su_sta 0.26 s (repeated) start condition hold time t hd_sta 0.26 s stop condition set-up time t su_sto 0.26 s bus free time between a stop and start condition t buf 0.5 s note: 1. for clhr set to 0 or 1 in the i2cn_ctrl register. 2. for the minimum hfperclk frequency required in fast-mode plus, refer to the i2c chapter in the reference manual. efr32bg12 blue gecko bluetooth ? low energy soc family data sheet electrical specifications silabs.com | building a more connected world. rev. 1.0 | 96
4.1.25 usart spi spi master timing table 4.53. spi master timing parameter symbol test condition min typ max unit sclk period 1 3 2 t sclk 2 * t hfperclk ns cs to mosi 1 3 t cs_mo -14.5 13.5 ns sclk to mosi 1 3 t sclk_mo -8.5 8 ns miso setup time 1 3 t su_mi iovdd = 1.62 v 92 ns iovdd = 3.0 v 42 ns miso hold time 1 3 t h_mi -10 ns note: 1. applies for both clkpha = 0 and clkpha = 1 (figure only shows clkpha = 0). 2. t hfperclk is one period of the selected hfperclk. 3. measurement done with 8 pf output loading at 10% and 90% of v dd (figure shows 50% of v dd ). cs sclk clkpol = 0 mosi miso t cs_mo t h_mi t su_mi t sckl_mo t sclk sclk clkpol = 1 figure 4.1. spi master timing diagram efr32bg12 blue gecko bluetooth ? low energy soc family data sheet electrical specifications silabs.com | building a more connected world. rev. 1.0 | 97
spi slave timing table 4.54. spi slave timing parameter symbol test condition min typ max unit sclk period 1 3 2 t sclk 6 * t hfperclk ns sclk high time 1 3 2 t sclk_hi 2.5 * t hfperclk ns sclk low time 1 3 2 t sclk_lo 2.5 * t hfperclk ns cs active to miso 1 3 t cs_act_mi 4 70 ns cs disable to miso 1 3 t cs_dis_mi 4 50 ns mosi setup time 1 3 t su_mo 8 ns mosi hold time 1 3 2 t h_mo 7 ns sclk to miso 1 3 2 t sclk_mi 10 + 1.5 * t hfperclk 65 + 2.5 * t hfperclk ns note: 1. applies for both clkpha = 0 and clkpha = 1 (figure only shows clkpha = 0). 2. t hfperclk is one period of the selected hfperclk. 3. measurement done with 8 pf output loading at 10% and 90% of v dd (figure shows 50% of v dd ). cs sclk clkpol = 0 mosi miso t cs_act_mi t sclk_hi t sclk t su_mo t h_mo t sclk_mi t cs_dis_mi t sclk_lo sclk clkpol = 1 figure 4.2. spi slave timing diagram 4.2 typical performance curves typical performance curves indicate typical characterized performance under the stated conditions. efr32bg12 blue gecko bluetooth ? low energy soc family data sheet electrical specifications silabs.com | building a more connected world. rev. 1.0 | 98
4.2.1 supply current figure 4.3. em0 active mode typical supply current vs. temperature efr32bg12 blue gecko bluetooth ? low energy soc family data sheet electrical specifications silabs.com | building a more connected world. rev. 1.0 | 99
figure 4.4. em1 sleep mode typical supply current vs. temperature typical supply current for em2, em3 and em4h using standard software libraries from silicon laboratories. efr32bg12 blue gecko bluetooth ? low energy soc family data sheet electrical specifications silabs.com | building a more connected world. rev. 1.0 | 100
figure 4.5. em2, em3, em4h and em4s typical supply current vs. temperature efr32bg12 blue gecko bluetooth ? low energy soc family data sheet electrical specifications silabs.com | building a more connected world. rev. 1.0 | 101
figure 4.6. em0 and em1 mode typical supply current vs. supply typical supply current for em2, em3 and em4h using standard software libraries from silicon laboratories. efr32bg12 blue gecko bluetooth ? low energy soc family data sheet electrical specifications silabs.com | building a more connected world. rev. 1.0 | 102
figure 4.7. em2, em3, em4h and em4s typical supply current vs. supply efr32bg12 blue gecko bluetooth ? low energy soc family data sheet electrical specifications silabs.com | building a more connected world. rev. 1.0 | 103
4.2.2 dc-dc converter default test conditions: ccm mode, ldcdc = 4.7 h, cdcdc = 4.7 f, vdcdc_i = 3.3 v, vdcdc_o = 1.8 v, fdcdc_ln = 7 mhz figure 4.8. dc-dc converter typical performance characteristics efr32bg12 blue gecko bluetooth ? low energy soc family data sheet electrical specifications silabs.com | building a more connected world. rev. 1.0 | 104
100 s/div 10 s/div 2v/div o f fset :1.8v 20mv/div o f fset :1.8v 100ma 1ma i load 60mv/div o f fset :1.8v v sw dvdd dvdd load step response in ln (ccm) mode ( heavy drive) ln (ccm) and lp mode transition (load: 5ma) figure 4.9. dc-dc converter transition waveforms efr32bg12 blue gecko bluetooth ? low energy soc family data sheet electrical specifications silabs.com | building a more connected world. rev. 1.0 | 105
4.2.3 2.4 ghz radio figure 4.10. 2.4 ghz rf transmitter output power efr32bg12 blue gecko bluetooth ? low energy soc family data sheet electrical specifications silabs.com | building a more connected world. rev. 1.0 | 106
figure 4.11. 2.4 ghz rf receiver sensitivity efr32bg12 blue gecko bluetooth ? low energy soc family data sheet electrical specifications silabs.com | building a more connected world. rev. 1.0 | 107
5. typical connection diagrams 5.1 power typical power supply connections for direct supply, without using the internal dc-dc converter, are shown in the following figure. main supply v dd vregvdd avdd iovdd vregsw vregvss dvdd decouple rfvdd pavdd hfxtal_n hfxtal_p lfxtal_n lfxtal_p + C figure 5.1. efr32bg12 typical application circuit: direct supply configuration without dc-dc converter typical power supply circuits using the internal dc-dc converter are shown below. the mcu operates from the dc-dc converter sup- ply. for low rf transmit power applications less than 13dbm, the rf pa may be supplied by the dc-dc converter. for opns support- ing high power rf transmission, the rf pa must be directly supplied by vdd for rf transmit power greater than 13 dbm. main supply v dcdc v dd vregvdd avdd iovdd vregsw vregvss dvdd decouple rfvdd pavdd hfxtal_n hfxtal_p lfxtal_n lfxtal_p + C figure 5.2. efr32bg12 typical application circuit: configuration with dc-dc converter (pavdd from vdcdc) efr32bg12 blue gecko bluetooth ? low energy soc family data sheet typical connection diagrams silabs.com | building a more connected world. rev. 1.0 | 108
main supply v dcdc v dd vregvdd avdd iovdd vregsw vregvss dvdd decouple rfvdd pavdd hfxtal_n hfxtal_p lfxtal_n lfxtal_p + C figure 5.3. efr32bg12 typical application circuit: configuration with dc-dc converter (pavdd from vdd) efr32bg12 blue gecko bluetooth ? low energy soc family data sheet typical connection diagrams silabs.com | building a more connected world. rev. 1.0 | 109
5.2 rf matching networks typical rf matching network circuit diagrams are shown in figure 5.4 typical 2.4 ghz rf impedance-matching network circuits on page 110 for applications in the 2.4ghz band, and in figure 5.5 typical sub-ghz rf impedance-matching network circuits on page 111 for applications in the sub-ghz band. application-specific component values can be found in the efr32 reference manual. for low rf transmit power applications less than 13dbm, the two-element match is recommended. for opns supporting high power rf transmission, the four-element match is recommended for high rf transmit power (> 13dbm). typical rf matching network circuit diagrams are shown in figure 5.5 typical sub-ghz rf impedance-matching network circuits on page 111 for applications in the sub-ghz band. application-specific component values can be found in the efr32 reference manual . for low rf transmit power applications less than 13dbm, the two-element match is recommended. for opns supporting high power rf transmission, the four-element match is recommended for high rf transmit power (> 13dbm). 2-element match for 2.4ghz band 4-element match for 2.4ghz band l0 c0 50 2g4rf_iop 2g4rf_ion 2g4rf_ion 2g4rf_iop l0 l1 c0 c1 50 pavdd pavdd pavdd pavdd figure 5.4. typical 2.4 ghz rf impedance-matching network circuits efr32bg12 blue gecko bluetooth ? low energy soc family data sheet typical connection diagrams silabs.com | building a more connected world. rev. 1.0 | 110
sub-ghz match topology i (169-450 mhz) sub-ghz match topology 2 (450-915 mhz) subgrf_in subgrf_ip subgrf_on subgrf_op 50 p a vdd l0 c0 c1 l3 l4 c4 c7 bal1 c8 c9 l5 l6 subgrf_in subgrf_ip subgrf_on subgrf_op 50 p a vdd l0 c0 c1 l3 l4 c4 c7 bal1 c8 c9 l5 l6 l1 l2 c2 c3 c5 c6 c10 l7 figure 5.5. typical sub-ghz rf impedance-matching network circuits 5.3 other connections other components or connections may be required to meet the system-level requirements. application note an0002: "hardware de- sign considerations" contains detailed information on these connections. application notes can be accessed on the silicon labs web- site ( www.silabs.com/32bit-appnotes ). efr32bg12 blue gecko bluetooth ? low energy soc family data sheet typical connection diagrams silabs.com | building a more connected world. rev. 1.0 | 111
6. pin definitions 6.1 bga125 2.4 ghz and sub-ghz device pinout figure 6.1. bga125 2.4 ghz and sub-ghz device pinout the following table provides package pin connections and general descriptions of pin functionality. for detailed information on the sup- ported features for each gpio pin, see 6.5 gpio functionality table or 6.6 alternate functionality overview . table 6.1. bga125 2.4 ghz and sub-ghz device pinout pin name pins description pin name pins description pf3 a1 gpio (5v) pf1 a2 gpio (5v) pc5 a3 gpio (5v) pc3 a4 gpio (5v) pc0 a5 gpio (5v) pc11 a6 gpio (5v) pc9 a7 gpio (5v) pc7 a8 gpio (5v) efr32bg12 blue gecko bluetooth ? low energy soc family data sheet pin definitions silabs.com | building a more connected world. rev. 1.0 | 112
pin name pins description pin name pins description decouple a9 decouple output for on-chip voltage regu- lator. an external decoupling capacitor is required at this pin. dvdd a10 digital power supply. vregvdd a11 voltage regulator vdd input vregsw a12 dcdc regulator switching node vregvss a13 b11 b12 voltage regulator vss pf8 b1 gpio (5v) pf2 b2 gpio (5v) pf0 b3 gpio (5v) pc4 b4 gpio (5v) pc1 b5 gpio (5v) pj14 b6 gpio (5v) pc10 b7 gpio (5v) pc8 b8 gpio (5v) pc6 b9 gpio (5v) iovdd b10 f2 f11 m12 digital io power supply. avdd b13 analog power supply. pf11 c1 gpio (5v) pf10 c2 gpio (5v) pf9 c3 gpio (5v) pc2 c5 gpio (5v) pj15 c6 gpio (5v) pb15 c10 gpio pb14 c11 gpio pb13 c12 gpio pb12 c13 gpio pf14 d1 gpio (5v) pf13 d2 gpio (5v) pf12 d3 gpio (5v) pb11 d11 gpio pb10 d12 gpio (5v) pb9 d13 gpio (5v) pk1 e1 gpio (5v) pk0 e2 gpio pf15 e3 gpio (5v) vss e5 e6 e7 e8 e9 f5 f6 f7 f8 f9 g5 g6 g7 g8 g9 h5 h6 h7 h8 h9 j5 j6 j7 j8 j9 k2 l2 ground pb8 e12 gpio (5v) efr32bg12 blue gecko bluetooth ? low energy soc family data sheet pin definitions silabs.com | building a more connected world. rev. 1.0 | 113
pin name pins description pin name pins description pb7 e13 gpio (5v) pk2 f1 gpio (5v) pb6 f12 gpio (5v) pi3 f13 gpio (5v) pf5 g1 gpio (5v) pf4 g2 gpio (5v) pi2 g11 gpio (5v) pi1 g12 gpio (5v) pi0 g13 gpio (5v) pf7 h1 gpio (5v) pf6 h2 gpio (5v) pa9 h12 gpio (5v) pa8 h13 gpio (5v) rfvdd j1 j2 radio power supply pa7 j11 gpio (5v) pa6 j12 gpio (5v) pa5 j13 gpio (5v) hfxtal_n k1 high frequency crystal input pin. pa4 k12 gpio pa3 k13 gpio hfxtal_p l1 high frequency crystal output pin. boden l10 brown-out detector enable. this pin may be left disconnected or tied to avdd. pa2 l12 gpio pa1 l13 gpio resetn m1 reset input, active low. to apply an exter- nal reset source to this pin, it is required to only drive this pin low during reset, and let the internal pull-up ensure that reset is re- leased. rfvss m2 m3 m4 m5 n5 radio ground pavss m6 m7 power amplifier (pa) voltage regulator vss pavdd m8 n8 power amplifier (pa) voltage regulator vdd input pd9 m9 gpio (5v) pd11 m10 gpio (5v) pd13 m11 gpio pa0 m13 gpio subgrf_op n1 sub ghz differential rf output, positive path. subgrf_on n2 sub ghz differential rf output, negative path. subgrf_ip n3 sub ghz differential rf input, positive path. subgrf_in n4 sub ghz differential rf input, negative path. 2g4rf_ion n6 2.4 ghz differential rf input/output, nega- tive path. this pin should be externally grounded. 2g4rf_iop n7 2.4 ghz differential rf input/output, posi- tive path. pd8 n9 gpio (5v) pd10 n10 gpio (5v) pd12 n11 gpio (5v) pd14 n12 gpio pd15 n13 gpio note: 1. gpio with 5v tolerance are indicated by (5v). efr32bg12 blue gecko bluetooth ? low energy soc family data sheet pin definitions silabs.com | building a more connected world. rev. 1.0 | 114
6.2 bga125 2.4 ghz device pinout figure 6.2. bga125 2.4 ghz device pinout the following table provides package pin connections and general descriptions of pin functionality. for detailed information on the sup- ported features for each gpio pin, see 6.5 gpio functionality table or 6.6 alternate functionality overview . table 6.2. bga125 2.4 ghz device pinout pin name pins description pin name pins description pf3 a1 gpio (5v) pf1 a2 gpio (5v) pc5 a3 gpio (5v) pc3 a4 gpio (5v) pc0 a5 gpio (5v) pc11 a6 gpio (5v) pc9 a7 gpio (5v) pc7 a8 gpio (5v) decouple a9 decouple output for on-chip voltage regu- lator. an external decoupling capacitor is required at this pin. dvdd a10 digital power supply. vregvdd a11 voltage regulator vdd input vregsw a12 dcdc regulator switching node efr32bg12 blue gecko bluetooth ? low energy soc family data sheet pin definitions silabs.com | building a more connected world. rev. 1.0 | 115
pin name pins description pin name pins description vregvss a13 b11 b12 voltage regulator vss pf8 b1 gpio (5v) pf2 b2 gpio (5v) pf0 b3 gpio (5v) pc4 b4 gpio (5v) pc1 b5 gpio (5v) pj14 b6 gpio (5v) pc10 b7 gpio (5v) pc8 b8 gpio (5v) pc6 b9 gpio (5v) iovdd b10 f2 f11 m12 digital io power supply. avdd b13 analog power supply. pf11 c1 gpio (5v) pf10 c2 gpio (5v) pf9 c3 gpio (5v) pc2 c5 gpio (5v) pj15 c6 gpio (5v) pb15 c10 gpio pb14 c11 gpio pb13 c12 gpio pb12 c13 gpio pf14 d1 gpio (5v) pf13 d2 gpio (5v) pf12 d3 gpio (5v) pb11 d11 gpio pb10 d12 gpio (5v) pb9 d13 gpio (5v) pk1 e1 gpio (5v) pk0 e2 gpio pf15 e3 gpio (5v) vss e5 e6 e7 e8 e9 f5 f6 f7 f8 f9 g5 g6 g7 g8 g9 h5 h6 h7 h8 h9 j5 j6 j7 j8 j9 k2 l2 ground pb8 e12 gpio (5v) pb7 e13 gpio (5v) pk2 f1 gpio (5v) pb6 f12 gpio (5v) pi3 f13 gpio (5v) pf5 g1 gpio (5v) pf4 g2 gpio (5v) efr32bg12 blue gecko bluetooth ? low energy soc family data sheet pin definitions silabs.com | building a more connected world. rev. 1.0 | 116
pin name pins description pin name pins description pi2 g11 gpio (5v) pi1 g12 gpio (5v) pi0 g13 gpio (5v) pf7 h1 gpio (5v) pf6 h2 gpio (5v) pa9 h12 gpio (5v) pa8 h13 gpio (5v) rfvdd j1 j2 radio power supply pa7 j11 gpio (5v) pa6 j12 gpio (5v) pa5 j13 gpio (5v) hfxtal_n k1 high frequency crystal input pin. pa4 k12 gpio pa3 k13 gpio hfxtal_p l1 high frequency crystal output pin. boden l10 brown-out detector enable. this pin may be left disconnected or tied to avdd. pa2 l12 gpio pa1 l13 gpio resetn m1 reset input, active low. to apply an exter- nal reset source to this pin, it is required to only drive this pin low during reset, and let the internal pull-up ensure that reset is re- leased. rfvss m2 m3 m4 m5 n5 radio ground pavss m6 m7 power amplifier (pa) voltage regulator vss pavdd m8 n8 power amplifier (pa) voltage regulator vdd input pd9 m9 gpio (5v) pd11 m10 gpio (5v) pd13 m11 gpio pa0 m13 gpio nc n1 n2 n3 n4 no connect. 2g4rf_ion n6 2.4 ghz differential rf input/output, nega- tive path. this pin should be externally grounded. 2g4rf_iop n7 2.4 ghz differential rf input/output, posi- tive path. pd8 n9 gpio (5v) pd10 n10 gpio (5v) pd12 n11 gpio (5v) pd14 n12 gpio pd15 n13 gpio note: 1. gpio with 5v tolerance are indicated by (5v). efr32bg12 blue gecko bluetooth ? low energy soc family data sheet pin definitions silabs.com | building a more connected world. rev. 1.0 | 117
6.3 qfn48 2.4 ghz and sub-ghz device pinout figure 6.3. qfn48 2.4 ghz and sub-ghz device pinout the following table provides package pin connections and general descriptions of pin functionality. for detailed information on the sup- ported features for each gpio pin, see 6.5 gpio functionality table or 6.6 alternate functionality overview . table 6.3. qfn48 2.4 ghz and sub-ghz device pinout pin name pins description pin name pins description vss 0 ground pf0 1 gpio (5v) pf1 2 gpio (5v) pf2 3 gpio (5v) pf3 4 gpio (5v) pf4 5 gpio (5v) pf5 6 gpio (5v) pf6 7 gpio (5v) pf7 8 gpio (5v) rfvdd 9 radio power supply hfxtal_n 10 high frequency crystal input pin. hfxtal_p 11 high frequency crystal output pin. efr32bg12 blue gecko bluetooth ? low energy soc family data sheet pin definitions silabs.com | building a more connected world. rev. 1.0 | 118
pin name pins description pin name pins description resetn 12 reset input, active low. to apply an exter- nal reset source to this pin, it is required to only drive this pin low during reset, and let the internal pull-up ensure that reset is re- leased. subgrf_op 13 sub ghz differential rf output, positive path. subgrf_on 14 sub ghz differential rf output, negative path. subgrf_ip 15 sub ghz differential rf input, positive path. subgrf_in 16 sub ghz differential rf input, negative path. rfvss 17 radio ground pavss 18 power amplifier (pa) voltage regulator vss 2g4rf_ion 19 2.4 ghz differential rf input/output, nega- tive path. this pin should be externally grounded. 2g4rf_iop 20 2.4 ghz differential rf input/output, posi- tive path. pavdd 21 power amplifier (pa) voltage regulator vdd input pd13 22 gpio pd14 23 gpio pd15 24 gpio pa0 25 gpio pa1 26 gpio pa2 27 gpio pa3 28 gpio pa4 29 gpio pa5 30 gpio (5v) pb11 31 gpio pb12 32 gpio pb13 33 gpio avdd 34 analog power supply. pb14 35 gpio pb15 36 gpio vregvss 37 voltage regulator vss vregsw 38 dcdc regulator switching node vregvdd 39 voltage regulator vdd input dvdd 40 digital power supply. decouple 41 decouple output for on-chip voltage regu- lator. an external decoupling capacitor is required at this pin. iovdd 42 digital io power supply. pc6 43 gpio (5v) pc7 44 gpio (5v) pc8 45 gpio (5v) pc9 46 gpio (5v) pc10 47 gpio (5v) pc11 48 gpio (5v) note: 1. gpio with 5v tolerance are indicated by (5v). efr32bg12 blue gecko bluetooth ? low energy soc family data sheet pin definitions silabs.com | building a more connected world. rev. 1.0 | 119
6.4 qfn48 2.4 ghz device pinout figure 6.4. qfn48 2.4 ghz device pinout the following table provides package pin connections and general descriptions of pin functionality. for detailed information on the sup- ported features for each gpio pin, see 6.5 gpio functionality table or 6.6 alternate functionality overview . table 6.4. qfn48 2.4 ghz device pinout pin name pins description pin name pins description vss 0 ground pf0 1 gpio (5v) pf1 2 gpio (5v) pf2 3 gpio (5v) pf3 4 gpio (5v) pf4 5 gpio (5v) pf5 6 gpio (5v) pf6 7 gpio (5v) pf7 8 gpio (5v) rfvdd 9 radio power supply hfxtal_n 10 high frequency crystal input pin. hfxtal_p 11 high frequency crystal output pin. efr32bg12 blue gecko bluetooth ? low energy soc family data sheet pin definitions silabs.com | building a more connected world. rev. 1.0 | 120
pin name pins description pin name pins description resetn 12 reset input, active low. to apply an exter- nal reset source to this pin, it is required to only drive this pin low during reset, and let the internal pull-up ensure that reset is re- leased. nc 13 no connect. rfvss 14 radio ground pavss 15 power amplifier (pa) voltage regulator vss 2g4rf_ion 16 2.4 ghz differential rf input/output, nega- tive path. this pin should be externally grounded. 2g4rf_iop 17 2.4 ghz differential rf input/output, posi- tive path. pavdd 18 power amplifier (pa) voltage regulator vdd input pd10 19 gpio (5v) pd11 20 gpio (5v) pd12 21 gpio (5v) pd13 22 gpio pd14 23 gpio pd15 24 gpio pa0 25 gpio pa1 26 gpio pa2 27 gpio pa3 28 gpio pa4 29 gpio pa5 30 gpio (5v) pb11 31 gpio pb12 32 gpio pb13 33 gpio avdd 34 analog power supply. pb14 35 gpio pb15 36 gpio vregvss 37 voltage regulator vss vregsw 38 dcdc regulator switching node vregvdd 39 voltage regulator vdd input dvdd 40 digital power supply. decouple 41 decouple output for on-chip voltage regu- lator. an external decoupling capacitor is required at this pin. iovdd 42 digital io power supply. pc6 43 gpio (5v) pc7 44 gpio (5v) pc8 45 gpio (5v) pc9 46 gpio (5v) pc10 47 gpio (5v) pc11 48 gpio (5v) note: 1. gpio with 5v tolerance are indicated by (5v). efr32bg12 blue gecko bluetooth ? low energy soc family data sheet pin definitions silabs.com | building a more connected world. rev. 1.0 | 121
6.5 gpio functionality table a wide selection of alternate functionality is available for multiplexing to various pins. the following table shows the name of each gpio pin, followed by the functionality available on that pin. refer to 6.6 alternate functionality overview for a list of gpio locations available for each function. table 6.5. gpio functionality table gpio name pin alternate functionality / description analog timers communication radio other pf3 busay busbx tim0_cc0 #27 tim0_cc1 #26 tim0_cc2 #25 tim0_cdti0 #24 tim0_cdti1 #23 tim0_cdti2 #22 tim1_cc0 #27 tim1_cc1 #26 tim1_cc2 #25 tim1_cc3 #24 wtim0_cdti2 #31 wtim1_cc0 #27 wtim1_cc1 #25 wtim1_cc2 #23 wtim1_cc3 #21 le- tim0_out0 #27 le- tim0_out1 #26 pcnt0_s0in #27 pcnt0_s1in #26 us0_tx #27 us0_rx #26 us0_clk #25 us0_cs #24 us0_cts #23 us0_rts #22 us1_tx #27 us1_rx #26 us1_clk #25 us1_cs #24 us1_cts #23 us1_rts #22 us2_tx #16 us2_rx #15 us2_clk #14 us2_cs #13 us2_cts #12 us2_rts #11 leu0_tx #27 leu0_rx #26 i2c0_sda #27 i2c0_scl #26 frc_dclk #27 frc_dout #26 frc_dframe #25 modem_dclk #27 modem_din #26 modem_dout #25 modem_ant0 #24 modem_ant1 #23 cmu_clk1 #6 prs_ch0 #3 prs_ch1 #2 prs_ch2 #1 prs_ch3 #0 acmp0_o #27 acmp1_o #27 dbg_tdi pf1 busay busbx tim0_cc0 #25 tim0_cc1 #24 tim0_cc2 #23 tim0_cdti0 #22 tim0_cdti1 #21 tim0_cdti2 #20 tim1_cc0 #25 tim1_cc1 #24 tim1_cc2 #23 tim1_cc3 #22 wtim0_cdti1 #31 wtim0_cdti2 #29 wtim1_cc0 #25 wtim1_cc1 #23 wtim1_cc2 #21 wtim1_cc3 #19 le- tim0_out0 #25 le- tim0_out1 #24 pcnt0_s0in #25 pcnt0_s1in #24 us0_tx #25 us0_rx #24 us0_clk #23 us0_cs #22 us0_cts #21 us0_rts #20 us1_tx #25 us1_rx #24 us1_clk #23 us1_cs #22 us1_cts #21 us1_rts #20 us2_tx #15 us2_rx #14 us2_clk #13 us2_cs #12 us2_cts #11 us2_rts #10 leu0_tx #25 leu0_rx #24 i2c0_sda #25 i2c0_scl #24 frc_dclk #25 frc_dout #24 frc_dframe #23 modem_dclk #25 modem_din #24 modem_dout #23 modem_ant0 #22 modem_ant1 #21 prs_ch0 #1 prs_ch1 #0 prs_ch2 #7 prs_ch3 #6 acmp0_o #25 acmp1_o #25 dbg_swdiotms boot_rx efr32bg12 blue gecko bluetooth ? low energy soc family data sheet pin definitions silabs.com | building a more connected world. rev. 1.0 | 122
gpio name pin alternate functionality / description analog timers communication radio other pc5 busay busbx wtim0_cc0 #25 wtim0_cc1 #23 wtim0_cc2 #21 wtim0_cdti0 #17 wtim0_cdti1 #15 wtim0_cdti2 #13 wtim1_cc0 #9 wtim1_cc1 #7 wtim1_cc2 #5 wtim1_cc3 #3 pcnt1_s0in #18 pcnt1_s1in #17 pcnt2_s0in #18 pcnt2_s1in #17 us3_tx #23 us3_rx #22 us3_clk #21 us3_cs #20 us3_cts #19 us3_rts #18 i2c1_sda #18 i2c1_scl #17 pc3 busay busbx wtim0_cc0 #23 wtim0_cc1 #21 wtim0_cc2 #19 wtim0_cdti0 #15 wtim0_cdti1 #13 wtim0_cdti2 #11 wtim1_cc0 #7 wtim1_cc1 #5 wtim1_cc2 #3 wtim1_cc3 #1 pcnt1_s0in #16 pcnt1_s1in #15 pcnt2_s0in #16 pcnt2_s1in #15 us3_tx #21 us3_rx #20 us3_clk #19 us3_cs #18 us3_cts #17 us3_rts #16 i2c1_sda #16 i2c1_scl #15 pc0 busby busax wtim0_cc0 #20 wtim0_cc1 #18 wtim0_cc2 #16 wtim0_cdti0 #12 wtim0_cdti1 #10 wtim0_cdti2 #8 wtim1_cc0 #4 wtim1_cc1 #2 wtim1_cc2 #0 pcnt1_s0in #13 pcnt1_s1in #12 pcnt2_s0in #13 pcnt2_s1in #12 us3_tx #18 us3_rx #17 us3_clk #16 us3_cs #15 us3_cts #14 us3_rts #13 i2c1_sda #13 i2c1_scl #12 efr32bg12 blue gecko bluetooth ? low energy soc family data sheet pin definitions silabs.com | building a more connected world. rev. 1.0 | 123
gpio name pin alternate functionality / description analog timers communication radio other pc11 busay busbx tim0_cc0 #16 tim0_cc1 #15 tim0_cc2 #14 tim0_cdti0 #13 tim0_cdti1 #12 tim0_cdti2 #11 tim1_cc0 #16 tim1_cc1 #15 tim1_cc2 #14 tim1_cc3 #13 wtim0_cc0 #31 wtim0_cc1 #29 wtim0_cc2 #27 wtim0_cdti0 #23 wtim0_cdti1 #21 wtim0_cdti2 #19 wtim1_cc0 #15 wtim1_cc1 #13 wtim1_cc2 #11 wtim1_cc3 #9 le- tim0_out0 #16 le- tim0_out1 #15 pcnt0_s0in #16 pcnt0_s1in #15 pcnt2_s0in #20 pcnt2_s1in #19 us0_tx #16 us0_rx #15 us0_clk #14 us0_cs #13 us0_cts #12 us0_rts #11 us1_tx #16 us1_rx #15 us1_clk #14 us1_cs #13 us1_cts #12 us1_rts #11 leu0_tx #16 leu0_rx #15 i2c0_sda #16 i2c0_scl #15 i2c1_sda #20 i2c1_scl #19 frc_dclk #16 frc_dout #15 frc_dframe #14 modem_dclk #16 modem_din #15 modem_dout #14 modem_ant0 #13 modem_ant1 #12 cmu_clk0 #3 prs_ch0 #13 prs_ch9 #16 prs_ch10 #5 prs_ch11 #4 acmp0_o #16 acmp1_o #16 dbg_swo #3 pc9 busay busbx tim0_cc0 #14 tim0_cc1 #13 tim0_cc2 #12 tim0_cdti0 #11 tim0_cdti1 #10 tim0_cdti2 #9 tim1_cc0 #14 tim1_cc1 #13 tim1_cc2 #12 tim1_cc3 #11 wtim0_cc0 #29 wtim0_cc1 #27 wtim0_cc2 #25 wtim0_cdti0 #21 wtim0_cdti1 #19 wtim0_cdti2 #17 wtim1_cc0 #13 wtim1_cc1 #11 wtim1_cc2 #9 wtim1_cc3 #7 le- tim0_out0 #14 le- tim0_out1 #13 pcnt0_s0in #14 pcnt0_s1in #13 us0_tx #14 us0_rx #13 us0_clk #12 us0_cs #11 us0_cts #10 us0_rts #9 us1_tx #14 us1_rx #13 us1_clk #12 us1_cs #11 us1_cts #10 us1_rts #9 leu0_tx #14 leu0_rx #13 i2c0_sda #14 i2c0_scl #13 frc_dclk #14 frc_dout #13 frc_dframe #12 modem_dclk #14 modem_din #13 modem_dout #12 modem_ant0 #11 modem_ant1 #10 prs_ch0 #11 prs_ch9 #14 prs_ch10 #3 prs_ch11 #2 acmp0_o #14 acmp1_o #14 etm_td2 #3 efr32bg12 blue gecko bluetooth ? low energy soc family data sheet pin definitions silabs.com | building a more connected world. rev. 1.0 | 124
gpio name pin alternate functionality / description analog timers communication radio other pc7 busay busbx tim0_cc0 #12 tim0_cc1 #11 tim0_cc2 #10 tim0_cdti0 #9 tim0_cdti1 #8 tim0_cdti2 #7 tim1_cc0 #12 tim1_cc1 #11 tim1_cc2 #10 tim1_cc3 #9 wtim0_cc0 #27 wtim0_cc1 #25 wtim0_cc2 #23 wtim0_cdti0 #19 wtim0_cdti1 #17 wtim0_cdti2 #15 wtim1_cc0 #11 wtim1_cc1 #9 wtim1_cc2 #7 wtim1_cc3 #5 le- tim0_out0 #12 le- tim0_out1 #11 pcnt0_s0in #12 pcnt0_s1in #11 us0_tx #12 us0_rx #11 us0_clk #10 us0_cs #9 us0_cts #8 us0_rts #7 us1_tx #12 us1_rx #11 us1_clk #10 us1_cs #9 us1_cts #8 us1_rts #7 leu0_tx #12 leu0_rx #11 i2c0_sda #12 i2c0_scl #11 frc_dclk #12 frc_dout #11 frc_dframe #10 modem_dclk #12 modem_din #11 modem_dout #10 modem_ant0 #9 modem_ant1 #8 cmu_clk1 #2 prs_ch0 #9 prs_ch9 #12 prs_ch10 #1 prs_ch11 #0 acmp0_o #12 acmp1_o #12 etm_td0 #3 pf8 busby busax wtim1_cc1 #30 wtim1_cc2 #28 wtim1_cc3 #26 pcnt1_s0in #21 pcnt1_s1in #20 pcnt2_s0in #21 pcnt2_s1in #20 us2_tx #21 us2_rx #20 us2_clk #19 us2_cs #18 us2_cts #17 us2_rts #16 i2c1_sda #21 i2c1_scl #20 etm_tclk #0 pf2 busby busax tim0_cc0 #26 tim0_cc1 #25 tim0_cc2 #24 tim0_cdti0 #23 tim0_cdti1 #22 tim0_cdti2 #21 tim1_cc0 #26 tim1_cc1 #25 tim1_cc2 #24 tim1_cc3 #23 wtim0_cdti2 #30 wtim1_cc0 #26 wtim1_cc1 #24 wtim1_cc2 #22 wtim1_cc3 #20 le- tim0_out0 #26 le- tim0_out1 #25 pcnt0_s0in #26 pcnt0_s1in #25 us0_tx #26 us0_rx #25 us0_clk #24 us0_cs #23 us0_cts #22 us0_rts #21 us1_tx #26 us1_rx #25 us1_clk #24 us1_cs #23 us1_cts #22 us1_rts #21 leu0_tx #26 leu0_rx #25 i2c0_sda #26 i2c0_scl #25 frc_dclk #26 frc_dout #25 frc_dframe #24 modem_dclk #26 modem_din #25 modem_dout #24 modem_ant0 #23 modem_ant1 #22 cmu_clk0 #6 prs_ch0 #2 prs_ch1 #1 prs_ch2 #0 prs_ch3 #7 acmp0_o #26 acmp1_o #26 dbg_tdo dbg_swo #0 gpio_em4wu0 efr32bg12 blue gecko bluetooth ? low energy soc family data sheet pin definitions silabs.com | building a more connected world. rev. 1.0 | 125
gpio name pin alternate functionality / description analog timers communication radio other pf0 busby busax tim0_cc0 #24 tim0_cc1 #23 tim0_cc2 #22 tim0_cdti0 #21 tim0_cdti1 #20 tim0_cdti2 #19 tim1_cc0 #24 tim1_cc1 #23 tim1_cc2 #22 tim1_cc3 #21 wtim0_cdti1 #30 wtim0_cdti2 #28 wtim1_cc0 #24 wtim1_cc1 #22 wtim1_cc2 #20 wtim1_cc3 #18 le- tim0_out0 #24 le- tim0_out1 #23 pcnt0_s0in #24 pcnt0_s1in #23 us0_tx #24 us0_rx #23 us0_clk #22 us0_cs #21 us0_cts #20 us0_rts #19 us1_tx #24 us1_rx #23 us1_clk #22 us1_cs #21 us1_cts #20 us1_rts #19 us2_tx #14 us2_rx #13 us2_clk #12 us2_cs #11 us2_cts #10 us2_rts #9 leu0_tx #24 leu0_rx #23 i2c0_sda #24 i2c0_scl #23 frc_dclk #24 frc_dout #23 frc_dframe #22 modem_dclk #24 modem_din #23 modem_dout #22 modem_ant0 #21 modem_ant1 #20 prs_ch0 #0 prs_ch1 #7 prs_ch2 #6 prs_ch3 #5 acmp0_o #24 acmp1_o #24 dbg_swclktck boot_tx pc4 busby busax wtim0_cc0 #24 wtim0_cc1 #22 wtim0_cc2 #20 wtim0_cdti0 #16 wtim0_cdti1 #14 wtim0_cdti2 #12 wtim1_cc0 #8 wtim1_cc1 #6 wtim1_cc2 #4 wtim1_cc3 #2 pcnt1_s0in #17 pcnt1_s1in #16 pcnt2_s0in #17 pcnt2_s1in #16 us3_tx #22 us3_rx #21 us3_clk #20 us3_cs #19 us3_cts #18 us3_rts #17 i2c1_sda #17 i2c1_scl #16 pc1 busay busbx wtim0_cc0 #21 wtim0_cc1 #19 wtim0_cc2 #17 wtim0_cdti0 #13 wtim0_cdti1 #11 wtim0_cdti2 #9 wtim1_cc0 #5 wtim1_cc1 #3 wtim1_cc2 #1 pcnt1_s0in #14 pcnt1_s1in #13 pcnt2_s0in #14 pcnt2_s1in #13 us3_tx #19 us3_rx #18 us3_clk #17 us3_cs #16 us3_cts #15 us3_rts #14 i2c1_sda #14 i2c1_scl #13 pj14 busacmp1y bu- sacmp1x pcnt1_s0in #11 pcnt1_s1in #10 pcnt2_s0in #11 pcnt2_s1in #10 us3_tx #16 us3_rx #15 us3_clk #14 us3_cs #13 us3_cts #12 us3_rts #11 i2c1_sda #11 i2c1_scl #10 les_altex2 efr32bg12 blue gecko bluetooth ? low energy soc family data sheet pin definitions silabs.com | building a more connected world. rev. 1.0 | 126
gpio name pin alternate functionality / description analog timers communication radio other pc10 busby busax tim0_cc0 #15 tim0_cc1 #14 tim0_cc2 #13 tim0_cdti0 #12 tim0_cdti1 #11 tim0_cdti2 #10 tim1_cc0 #15 tim1_cc1 #14 tim1_cc2 #13 tim1_cc3 #12 wtim0_cc0 #30 wtim0_cc1 #28 wtim0_cc2 #26 wtim0_cdti0 #22 wtim0_cdti1 #20 wtim0_cdti2 #18 wtim1_cc0 #14 wtim1_cc1 #12 wtim1_cc2 #10 wtim1_cc3 #8 le- tim0_out0 #15 le- tim0_out1 #14 pcnt0_s0in #15 pcnt0_s1in #14 pcnt2_s0in #19 pcnt2_s1in #18 us0_tx #15 us0_rx #14 us0_clk #13 us0_cs #12 us0_cts #11 us0_rts #10 us1_tx #15 us1_rx #14 us1_clk #13 us1_cs #12 us1_cts #11 us1_rts #10 leu0_tx #15 leu0_rx #14 i2c0_sda #15 i2c0_scl #14 i2c1_sda #19 i2c1_scl #18 frc_dclk #15 frc_dout #14 frc_dframe #13 modem_dclk #15 modem_din #14 modem_dout #13 modem_ant0 #12 modem_ant1 #11 cmu_clk1 #3 prs_ch0 #12 prs_ch9 #15 prs_ch10 #4 prs_ch11 #3 acmp0_o #15 acmp1_o #15 etm_td3 #3 gpio_em4wu12 pc8 busby busax tim0_cc0 #13 tim0_cc1 #12 tim0_cc2 #11 tim0_cdti0 #10 tim0_cdti1 #9 tim0_cdti2 #8 tim1_cc0 #13 tim1_cc1 #12 tim1_cc2 #11 tim1_cc3 #10 wtim0_cc0 #28 wtim0_cc1 #26 wtim0_cc2 #24 wtim0_cdti0 #20 wtim0_cdti1 #18 wtim0_cdti2 #16 wtim1_cc0 #12 wtim1_cc1 #10 wtim1_cc2 #8 wtim1_cc3 #6 le- tim0_out0 #13 le- tim0_out1 #12 pcnt0_s0in #13 pcnt0_s1in #12 us0_tx #13 us0_rx #12 us0_clk #11 us0_cs #10 us0_cts #9 us0_rts #8 us1_tx #13 us1_rx #12 us1_clk #11 us1_cs #10 us1_cts #9 us1_rts #8 leu0_tx #13 leu0_rx #12 i2c0_sda #13 i2c0_scl #12 frc_dclk #13 frc_dout #12 frc_dframe #11 modem_dclk #13 modem_din #12 modem_dout #11 modem_ant0 #10 modem_ant1 #9 prs_ch0 #10 prs_ch9 #13 prs_ch10 #2 prs_ch11 #1 acmp0_o #13 acmp1_o #13 etm_td1 #3 efr32bg12 blue gecko bluetooth ? low energy soc family data sheet pin definitions silabs.com | building a more connected world. rev. 1.0 | 127
gpio name pin alternate functionality / description analog timers communication radio other pc6 busby busax tim0_cc0 #11 tim0_cc1 #10 tim0_cc2 #9 tim0_cdti0 #8 tim0_cdti1 #7 tim0_cdti2 #6 tim1_cc0 #11 tim1_cc1 #10 tim1_cc2 #9 tim1_cc3 #8 wtim0_cc0 #26 wtim0_cc1 #24 wtim0_cc2 #22 wtim0_cdti0 #18 wtim0_cdti1 #16 wtim0_cdti2 #14 wtim1_cc0 #10 wtim1_cc1 #8 wtim1_cc2 #6 wtim1_cc3 #4 le- tim0_out0 #11 le- tim0_out1 #10 pcnt0_s0in #11 pcnt0_s1in #10 us0_tx #11 us0_rx #10 us0_clk #9 us0_cs #8 us0_cts #7 us0_rts #6 us1_tx #11 us1_rx #10 us1_clk #9 us1_cs #8 us1_cts #7 us1_rts #6 leu0_tx #11 leu0_rx #10 i2c0_sda #11 i2c0_scl #10 frc_dclk #11 frc_dout #10 frc_dframe #9 modem_dclk #11 modem_din #10 modem_dout #9 modem_ant0 #8 modem_ant1 #7 cmu_clk0 #2 cmu_clki0 #2 prs_ch0 #8 prs_ch9 #11 prs_ch10 #0 prs_ch11 #5 acmp0_o #11 acmp1_o #11 etm_tclk #3 pf11 busay busbx wtim1_cc2 #31 wtim1_cc3 #29 pcnt1_s0in #24 pcnt1_s1in #23 pcnt2_s0in #24 pcnt2_s1in #23 us2_tx #24 us2_rx #23 us2_clk #22 us2_cs #21 us2_cts #20 us2_rts #19 us3_tx #24 us3_rx #23 us3_clk #22 us3_cs #21 us3_cts #20 us3_rts #19 i2c1_sda #24 i2c1_scl #23 etm_td2 #0 pf10 busby busax wtim1_cc2 #30 wtim1_cc3 #28 pcnt1_s0in #23 pcnt1_s1in #22 pcnt2_s0in #23 pcnt2_s1in #22 us2_tx #23 us2_rx #22 us2_clk #21 us2_cs #20 us2_cts #19 us2_rts #18 i2c1_sda #23 i2c1_scl #22 etm_td1 #0 pf9 busay busbx wtim1_cc1 #31 wtim1_cc2 #29 wtim1_cc3 #27 pcnt1_s0in #22 pcnt1_s1in #21 pcnt2_s0in #22 pcnt2_s1in #21 us2_tx #22 us2_rx #21 us2_clk #20 us2_cs #19 us2_cts #18 us2_rts #17 i2c1_sda #22 i2c1_scl #21 etm_td0 #0 efr32bg12 blue gecko bluetooth ? low energy soc family data sheet pin definitions silabs.com | building a more connected world. rev. 1.0 | 128
gpio name pin alternate functionality / description analog timers communication radio other pc2 busby busax wtim0_cc0 #22 wtim0_cc1 #20 wtim0_cc2 #18 wtim0_cdti0 #14 wtim0_cdti1 #12 wtim0_cdti2 #10 wtim1_cc0 #6 wtim1_cc1 #4 wtim1_cc2 #2 wtim1_cc3 #0 pcnt1_s0in #15 pcnt1_s1in #14 pcnt2_s0in #15 pcnt2_s1in #14 us3_tx #20 us3_rx #19 us3_clk #18 us3_cs #17 us3_cts #16 us3_rts #15 i2c1_sda #15 i2c1_scl #14 pj15 busacmp1y bu- sacmp1x pcnt1_s0in #12 pcnt1_s1in #11 pcnt2_s0in #12 pcnt2_s1in #11 us3_tx #17 us3_rx #16 us3_clk #15 us3_cs #14 us3_cts #13 us3_rts #12 i2c1_sda #12 i2c1_scl #11 les_altex3 pb15 buscy busdx lfxtal_p tim0_cc0 #10 tim0_cc1 #9 tim0_cc2 #8 tim0_cdti0 #7 tim0_cdti1 #6 tim0_cdti2 #5 tim1_cc0 #10 tim1_cc1 #9 tim1_cc2 #8 tim1_cc3 #7 wtim0_cc0 #19 wtim0_cc1 #17 wtim0_cc2 #15 wtim0_cdti0 #11 wtim0_cdti1 #9 wtim0_cdti2 #7 wtim1_cc0 #3 wtim1_cc1 #1 le- tim0_out0 #10 le- tim0_out1 #9 pcnt0_s0in #10 pcnt0_s1in #9 us0_tx #10 us0_rx #9 us0_clk #8 us0_cs #7 us0_cts #6 us0_rts #5 us1_tx #10 us1_rx #9 us1_clk #8 us1_cs #7 us1_cts #6 us1_rts #5 leu0_tx #10 leu0_rx #9 i2c0_sda #10 i2c0_scl #9 frc_dclk #10 frc_dout #9 frc_dframe #8 modem_dclk #10 modem_din #9 modem_dout #8 modem_ant0 #7 modem_ant1 #6 cmu_clk0 #1 prs_ch6 #10 prs_ch7 #9 prs_ch8 #8 prs_ch9 #7 acmp0_o #10 acmp1_o #10 efr32bg12 blue gecko bluetooth ? low energy soc family data sheet pin definitions silabs.com | building a more connected world. rev. 1.0 | 129
gpio name pin alternate functionality / description analog timers communication radio other pb14 busdy buscx lfxtal_n tim0_cc0 #9 tim0_cc1 #8 tim0_cc2 #7 tim0_cdti0 #6 tim0_cdti1 #5 tim0_cdti2 #4 tim1_cc0 #9 tim1_cc1 #8 tim1_cc2 #7 tim1_cc3 #6 wtim0_cc0 #18 wtim0_cc1 #16 wtim0_cc2 #14 wtim0_cdti0 #10 wtim0_cdti1 #8 wtim0_cdti2 #6 wtim1_cc0 #2 wtim1_cc1 #0 le- tim0_out0 #9 le- tim0_out1 #8 pcnt0_s0in #9 pcnt0_s1in #8 us0_tx #9 us0_rx #8 us0_clk #7 us0_cs #6 us0_cts #5 us0_rts #4 us1_tx #9 us1_rx #8 us1_clk #7 us1_cs #6 us1_cts #5 us1_rts #4 leu0_tx #9 leu0_rx #8 i2c0_sda #9 i2c0_scl #8 frc_dclk #9 frc_dout #8 frc_dframe #7 modem_dclk #9 modem_din #8 modem_dout #7 modem_ant0 #6 modem_ant1 #5 cmu_clk1 #1 prs_ch6 #9 prs_ch7 #8 prs_ch8 #7 prs_ch9 #6 acmp0_o #9 acmp1_o #9 pb13 buscy busdx opa2_n tim0_cc0 #8 tim0_cc1 #7 tim0_cc2 #6 tim0_cdti0 #5 tim0_cdti1 #4 tim0_cdti2 #3 tim1_cc0 #8 tim1_cc1 #7 tim1_cc2 #6 tim1_cc3 #5 wtim0_cc0 #17 wtim0_cc1 #15 wtim0_cc2 #13 wtim0_cdti0 #9 wtim0_cdti1 #7 wtim0_cdti2 #5 wtim1_cc0 #1 le- tim0_out0 #8 le- tim0_out1 #7 pcnt0_s0in #8 pcnt0_s1in #7 us0_tx #8 us0_rx #7 us0_clk #6 us0_cs #5 us0_cts #4 us0_rts #3 us1_tx #8 us1_rx #7 us1_clk #6 us1_cs #5 us1_cts #4 us1_rts #3 leu0_tx #8 leu0_rx #7 i2c0_sda #8 i2c0_scl #7 frc_dclk #8 frc_dout #7 frc_dframe #6 modem_dclk #8 modem_din #7 modem_dout #6 modem_ant0 #5 modem_ant1 #4 cmu_clki0 #0 prs_ch6 #8 prs_ch7 #7 prs_ch8 #6 prs_ch9 #5 acmp0_o #8 acmp1_o #8 dbg_swo #1 gpio_em4wu9 efr32bg12 blue gecko bluetooth ? low energy soc family data sheet pin definitions silabs.com | building a more connected world. rev. 1.0 | 130
gpio name pin alternate functionality / description analog timers communication radio other pb12 busdy buscx opa2_out tim0_cc0 #7 tim0_cc1 #6 tim0_cc2 #5 tim0_cdti0 #4 tim0_cdti1 #3 tim0_cdti2 #2 tim1_cc0 #7 tim1_cc1 #6 tim1_cc2 #5 tim1_cc3 #4 wtim0_cc0 #16 wtim0_cc1 #14 wtim0_cc2 #12 wtim0_cdti0 #8 wtim0_cdti1 #6 wtim0_cdti2 #4 wtim1_cc0 #0 le- tim0_out0 #7 le- tim0_out1 #6 pcnt0_s0in #7 pcnt0_s1in #6 us0_tx #7 us0_rx #6 us0_clk #5 us0_cs #4 us0_cts #3 us0_rts #2 us1_tx #7 us1_rx #6 us1_clk #5 us1_cs #4 us1_cts #3 us1_rts #2 leu0_tx #7 leu0_rx #6 i2c0_sda #7 i2c0_scl #6 frc_dclk #7 frc_dout #6 frc_dframe #5 modem_dclk #7 modem_din #6 modem_dout #5 modem_ant0 #4 modem_ant1 #3 prs_ch6 #7 prs_ch7 #6 prs_ch8 #5 prs_ch9 #4 acmp0_o #7 acmp1_o #7 pf14 busby busax pcnt1_s0in #27 pcnt1_s1in #26 pcnt2_s0in #27 pcnt2_s1in #26 us2_tx #27 us2_rx #26 us2_clk #25 us2_cs #24 us2_cts #23 us2_rts #22 us3_tx #27 us3_rx #26 us3_clk #25 us3_cs #24 us3_cts #23 us3_rts #22 i2c1_sda #27 i2c1_scl #26 pf13 busay busbx wtim1_cc3 #31 pcnt1_s0in #26 pcnt1_s1in #25 pcnt2_s0in #26 pcnt2_s1in #25 us2_tx #26 us2_rx #25 us2_clk #24 us2_cs #23 us2_cts #22 us2_rts #21 us3_tx #26 us3_rx #25 us3_clk #24 us3_cs #23 us3_cts #22 us3_rts #21 i2c1_sda #26 i2c1_scl #25 efr32bg12 blue gecko bluetooth ? low energy soc family data sheet pin definitions silabs.com | building a more connected world. rev. 1.0 | 131
gpio name pin alternate functionality / description analog timers communication radio other pf12 busby busax wtim1_cc3 #30 pcnt1_s0in #25 pcnt1_s1in #24 pcnt2_s0in #25 pcnt2_s1in #24 us2_tx #25 us2_rx #24 us2_clk #23 us2_cs #22 us2_cts #21 us2_rts #20 us3_tx #25 us3_rx #24 us3_clk #23 us3_cs #22 us3_cts #21 us3_rts #20 i2c1_sda #25 i2c1_scl #24 etm_td3 #0 pb11 buscy busdx opa2_p tim0_cc0 #6 tim0_cc1 #5 tim0_cc2 #4 tim0_cdti0 #3 tim0_cdti1 #2 tim0_cdti2 #1 tim1_cc0 #6 tim1_cc1 #5 tim1_cc2 #4 tim1_cc3 #3 wtim0_cc0 #15 wtim0_cc1 #13 wtim0_cc2 #11 wtim0_cdti0 #7 wtim0_cdti1 #5 wtim0_cdti2 #3 letim0_out0 #6 letim0_out1 #5 pcnt0_s0in #6 pcnt0_s1in #5 us0_tx #6 us0_rx #5 us0_clk #4 us0_cs #3 us0_cts #2 us0_rts #1 us1_tx #6 us1_rx #5 us1_clk #4 us1_cs #3 us1_cts #2 us1_rts #1 us3_tx #15 us3_rx #14 us3_clk #13 us3_cs #12 us3_cts #11 us3_rts #10 leu0_tx #6 leu0_rx #5 i2c0_sda #6 i2c0_scl #5 frc_dclk #6 frc_dout #5 frc_dframe #4 modem_dclk #6 modem_din #5 modem_dout #4 modem_ant0 #3 modem_ant1 #2 prs_ch6 #6 prs_ch7 #5 prs_ch8 #4 prs_ch9 #3 acmp0_o #6 acmp1_o #6 pb10 opa2_outalt #1 busdy buscx wtim0_cc0 #14 wtim0_cc1 #12 wtim0_cc2 #10 wtim0_cdti0 #6 wtim0_cdti1 #4 wtim0_cdti2 #2 pcnt1_s0in #10 pcnt1_s1in #9 pcnt2_s0in #10 pcnt2_s1in #9 us2_tx #13 us2_rx #12 us2_clk #11 us2_cs #10 us2_cts #9 us2_rts #8 us3_tx #14 us3_rx #13 us3_clk #12 us3_cs #11 us3_cts #10 us3_rts #9 i2c1_sda #10 i2c1_scl #9 efr32bg12 blue gecko bluetooth ? low energy soc family data sheet pin definitions silabs.com | building a more connected world. rev. 1.0 | 132
gpio name pin alternate functionality / description analog timers communication radio other pb9 opa2_outalt #0 buscy busdx wtim0_cc0 #13 wtim0_cc1 #11 wtim0_cc2 #9 wtim0_cdti0 #5 wtim0_cdti1 #3 wtim0_cdti2 #1 pcnt1_s0in #9 pcnt1_s1in #8 pcnt2_s0in #9 pcnt2_s1in #8 us2_tx #12 us2_rx #11 us2_clk #10 us2_cs #9 us2_cts #8 us2_rts #7 us3_tx #13 us3_rx #12 us3_clk #11 us3_cs #10 us3_cts #9 us3_rts #8 i2c1_sda #9 i2c1_scl #8 pk1 pcnt1_s0in #30 pcnt1_s1in #29 pcnt2_s0in #30 pcnt2_s1in #29 us2_tx #30 us2_rx #29 us2_clk #28 us2_cs #27 us2_cts #26 us2_rts #25 us3_tx #30 us3_rx #29 us3_clk #28 us3_cs #27 us3_cts #26 us3_rts #25 i2c1_sda #30 i2c1_scl #29 pk0 idac0_out pcnt1_s0in #29 pcnt1_s1in #28 pcnt2_s0in #29 pcnt2_s1in #28 us2_tx #29 us2_rx #28 us2_clk #27 us2_cs #26 us2_cts #25 us2_rts #24 us3_tx #29 us3_rx #28 us3_clk #27 us3_cs #26 us3_cts #25 us3_rts #24 i2c1_sda #29 i2c1_scl #28 pf15 busay busbx pcnt1_s0in #28 pcnt1_s1in #27 pcnt2_s0in #28 pcnt2_s1in #27 us2_tx #28 us2_rx #27 us2_clk #26 us2_cs #25 us2_cts #24 us2_rts #23 us3_tx #28 us3_rx #27 us3_clk #26 us3_cs #25 us3_cts #24 us3_rts #23 i2c1_sda #28 i2c1_scl #27 efr32bg12 blue gecko bluetooth ? low energy soc family data sheet pin definitions silabs.com | building a more connected world. rev. 1.0 | 133
gpio name pin alternate functionality / description analog timers communication radio other pb8 busdy buscx wtim0_cc0 #12 wtim0_cc1 #10 wtim0_cc2 #8 wtim0_cdti0 #4 wtim0_cdti1 #2 wtim0_cdti2 #0 pcnt1_s0in #8 pcnt1_s1in #7 pcnt2_s0in #8 pcnt2_s1in #7 us2_tx #11 us2_rx #10 us2_clk #9 us2_cs #8 us2_cts #7 us2_rts #6 us3_tx #12 us3_rx #11 us3_clk #10 us3_cs #9 us3_cts #8 us3_rts #7 i2c1_sda #8 i2c1_scl #7 etm_td3 #2 pb7 buscy busdx wtim0_cc0 #11 wtim0_cc1 #9 wtim0_cc2 #7 wtim0_cdti0 #3 wtim0_cdti1 #1 pcnt1_s0in #7 pcnt1_s1in #6 pcnt2_s0in #7 pcnt2_s1in #6 us2_tx #10 us2_rx #9 us2_clk #8 us2_cs #7 us2_cts #6 us2_rts #5 us3_tx #11 us3_rx #10 us3_clk #9 us3_cs #8 us3_cts #7 us3_rts #6 i2c1_sda #7 i2c1_scl #6 etm_td2 #2 pk2 pcnt1_s0in #31 pcnt1_s1in #30 pcnt2_s0in #31 pcnt2_s1in #30 us2_tx #31 us2_rx #30 us2_clk #29 us2_cs #28 us2_cts #27 us2_rts #26 us3_tx #31 us3_rx #30 us3_clk #29 us3_cs #28 us3_cts #27 us3_rts #26 i2c1_sda #31 i2c1_scl #30 pb6 busdy buscx wtim0_cc0 #10 wtim0_cc1 #8 wtim0_cc2 #6 wtim0_cdti0 #2 wtim0_cdti1 #0 pcnt1_s0in #6 pcnt1_s1in #5 pcnt2_s0in #6 pcnt2_s1in #5 us2_tx #9 us2_rx #8 us2_clk #7 us2_cs #6 us2_cts #5 us2_rts #4 us3_tx #10 us3_rx #9 us3_clk #8 us3_cs #7 us3_cts #6 us3_rts #5 i2c1_sda #6 i2c1_scl #5 cmu_clki0 #3 etm_td1 #2 efr32bg12 blue gecko bluetooth ? low energy soc family data sheet pin definitions silabs.com | building a more connected world. rev. 1.0 | 134
gpio name pin alternate functionality / description analog timers communication radio other pi3 busadc0y bu- sadc0x pcnt1_s0in #5 pcnt1_s1in #4 pcnt2_s0in #5 pcnt2_s1in #4 us2_tx #8 us2_rx #7 us2_clk #6 us2_cs #5 us2_cts #4 us2_rts #3 us3_tx #9 us3_rx #8 us3_clk #7 us3_cs #6 us3_cts #5 us3_rts #4 i2c1_sda #5 i2c1_scl #4 les_altex7 etm_td0 #2 pf5 busay busbx tim0_cc0 #29 tim0_cc1 #28 tim0_cc2 #27 tim0_cdti0 #26 tim0_cdti1 #25 tim0_cdti2 #24 tim1_cc0 #29 tim1_cc1 #28 tim1_cc2 #27 tim1_cc3 #26 wtim1_cc0 #29 wtim1_cc1 #27 wtim1_cc2 #25 wtim1_cc3 #23 le- tim0_out0 #29 le- tim0_out1 #28 pcnt0_s0in #29 pcnt0_s1in #28 us0_tx #29 us0_rx #28 us0_clk #27 us0_cs #26 us0_cts #25 us0_rts #24 us1_tx #29 us1_rx #28 us1_clk #27 us1_cs #26 us1_cts #25 us1_rts #24 us2_tx #18 us2_rx #17 us2_clk #16 us2_cs #15 us2_cts #14 us2_rts #13 leu0_tx #29 leu0_rx #28 i2c0_sda #29 i2c0_scl #28 frc_dclk #29 frc_dout #28 frc_dframe #27 modem_dclk #29 modem_din #28 modem_dout #27 modem_ant0 #26 modem_ant1 #25 prs_ch0 #5 prs_ch1 #4 prs_ch2 #3 prs_ch3 #2 acmp0_o #29 acmp1_o #29 pf4 busby busax tim0_cc0 #28 tim0_cc1 #27 tim0_cc2 #26 tim0_cdti0 #25 tim0_cdti1 #24 tim0_cdti2 #23 tim1_cc0 #28 tim1_cc1 #27 tim1_cc2 #26 tim1_cc3 #25 wtim1_cc0 #28 wtim1_cc1 #26 wtim1_cc2 #24 wtim1_cc3 #22 le- tim0_out0 #28 le- tim0_out1 #27 pcnt0_s0in #28 pcnt0_s1in #27 us0_tx #28 us0_rx #27 us0_clk #26 us0_cs #25 us0_cts #24 us0_rts #23 us1_tx #28 us1_rx #27 us1_clk #26 us1_cs #25 us1_cts #24 us1_rts #23 us2_tx #17 us2_rx #16 us2_clk #15 us2_cs #14 us2_cts #13 us2_rts #12 leu0_tx #28 leu0_rx #27 i2c0_sda #28 i2c0_scl #27 frc_dclk #28 frc_dout #27 frc_dframe #26 modem_dclk #28 modem_din #27 modem_dout #26 modem_ant0 #25 modem_ant1 #24 prs_ch0 #4 prs_ch1 #3 prs_ch2 #2 prs_ch3 #1 acmp0_o #28 acmp1_o #28 efr32bg12 blue gecko bluetooth ? low energy soc family data sheet pin definitions silabs.com | building a more connected world. rev. 1.0 | 135
gpio name pin alternate functionality / description analog timers communication radio other pi2 busadc0y bu- sadc0x pcnt1_s0in #4 pcnt1_s1in #3 pcnt2_s0in #4 pcnt2_s1in #3 us2_tx #7 us2_rx #6 us2_clk #5 us2_cs #4 us2_cts #3 us2_rts #2 us3_tx #8 us3_rx #7 us3_clk #6 us3_cs #5 us3_cts #4 us3_rts #3 i2c1_sda #4 i2c1_scl #3 les_altex6 etm_tclk #2 pi1 busadc0y bu- sadc0x us2_tx #6 us2_rx #5 us2_clk #4 us2_cs #3 us2_cts #2 us2_rts #1 les_altex5 pi0 busadc0y bu- sadc0x us2_tx #5 us2_rx #4 us2_clk #3 us2_cs #2 us2_cts #1 us2_rts #0 les_altex4 pf7 busay busbx tim0_cc0 #31 tim0_cc1 #30 tim0_cc2 #29 tim0_cdti0 #28 tim0_cdti1 #27 tim0_cdti2 #26 tim1_cc0 #31 tim1_cc1 #30 tim1_cc2 #29 tim1_cc3 #28 wtim1_cc0 #31 wtim1_cc1 #29 wtim1_cc2 #27 wtim1_cc3 #25 le- tim0_out0 #31 le- tim0_out1 #30 pcnt0_s0in #31 pcnt0_s1in #30 pcnt1_s0in #20 pcnt1_s1in #19 us0_tx #31 us0_rx #30 us0_clk #29 us0_cs #28 us0_cts #27 us0_rts #26 us1_tx #31 us1_rx #30 us1_clk #29 us1_cs #28 us1_cts #27 us1_rts #26 us2_tx #20 us2_rx #19 us2_clk #18 us2_cs #17 us2_cts #16 us2_rts #15 leu0_tx #31 leu0_rx #30 i2c0_sda #31 i2c0_scl #30 frc_dclk #31 frc_dout #30 frc_dframe #29 modem_dclk #31 modem_din #30 modem_dout #29 modem_ant0 #28 modem_ant1 #27 cmu_clki0 #1 cmu_clk0 #7 prs_ch0 #7 prs_ch1 #6 prs_ch2 #5 prs_ch3 #4 acmp0_o #31 acmp1_o #31 gpio_em4wu1 efr32bg12 blue gecko bluetooth ? low energy soc family data sheet pin definitions silabs.com | building a more connected world. rev. 1.0 | 136
gpio name pin alternate functionality / description analog timers communication radio other pf6 busby busax tim0_cc0 #30 tim0_cc1 #29 tim0_cc2 #28 tim0_cdti0 #27 tim0_cdti1 #26 tim0_cdti2 #25 tim1_cc0 #30 tim1_cc1 #29 tim1_cc2 #28 tim1_cc3 #27 wtim1_cc0 #30 wtim1_cc1 #28 wtim1_cc2 #26 wtim1_cc3 #24 le- tim0_out0 #30 le- tim0_out1 #29 pcnt0_s0in #30 pcnt0_s1in #29 pcnt1_s0in #19 pcnt1_s1in #18 us0_tx #30 us0_rx #29 us0_clk #28 us0_cs #27 us0_cts #26 us0_rts #25 us1_tx #30 us1_rx #29 us1_clk #28 us1_cs #27 us1_cts #26 us1_rts #25 us2_tx #19 us2_rx #18 us2_clk #17 us2_cs #16 us2_cts #15 us2_rts #14 leu0_tx #30 leu0_rx #29 i2c0_sda #30 i2c0_scl #29 frc_dclk #30 frc_dout #29 frc_dframe #28 modem_dclk #30 modem_din #29 modem_dout #28 modem_ant0 #27 modem_ant1 #26 cmu_clk1 #7 prs_ch0 #6 prs_ch1 #5 prs_ch2 #4 prs_ch3 #3 acmp0_o #30 acmp1_o #30 pa9 busacmp0y bu- sacmp0x wtim0_cc0 #9 wtim0_cc1 #7 wtim0_cc2 #5 wtim0_cdti0 #1 pcnt1_s0in #3 pcnt1_s1in #2 pcnt2_s0in #3 pcnt2_s1in #2 us2_tx #4 us2_rx #3 us2_clk #2 us2_cs #1 us2_cts #0 us2_rts #31 i2c1_sda #3 i2c1_scl #2 les_altex1 etm_td3 #1 pa8 busacmp0y bu- sacmp0x wtim0_cc0 #8 wtim0_cc1 #6 wtim0_cc2 #4 wtim0_cdti0 #0 pcnt1_s0in #2 pcnt1_s1in #1 pcnt2_s0in #2 pcnt2_s1in #1 us2_tx #3 us2_rx #2 us2_clk #1 us2_cs #0 us2_cts #31 us2_rts #30 i2c1_sda #2 i2c1_scl #1 les_altex0 etm_td2 #1 pa7 buscy busdx wtim0_cc0 #7 wtim0_cc1 #5 wtim0_cc2 #3 pcnt1_s0in #1 pcnt1_s1in #0 pcnt2_s0in #1 pcnt2_s1in #0 us2_tx #2 us2_rx #1 us2_clk #0 us2_cs #31 us2_cts #30 us2_rts #29 i2c1_sda #1 i2c1_scl #0 les_ch15 etm_td1 #1 pa6 busdy buscx wtim0_cc0 #6 wtim0_cc1 #4 wtim0_cc2 #2 pcnt1_s0in #0 pcnt1_s1in #31 pcnt2_s0in #0 pcnt2_s1in #31 us2_tx #1 us2_rx #0 us2_clk #31 us2_cs #30 us2_cts #29 us2_rts #28 i2c1_sda #0 i2c1_scl #31 les_ch14 etm_td0 #1 efr32bg12 blue gecko bluetooth ? low energy soc family data sheet pin definitions silabs.com | building a more connected world. rev. 1.0 | 137
gpio name pin alternate functionality / description analog timers communication radio other pa5 vdac0_out0alt / opa0_outalt #0 buscy busdx tim0_cc0 #5 tim0_cc1 #4 tim0_cc2 #3 tim0_cdti0 #2 tim0_cdti1 #1 tim0_cdti2 #0 tim1_cc0 #5 tim1_cc1 #4 tim1_cc2 #3 tim1_cc3 #2 wtim0_cc0 #5 wtim0_cc1 #3 wtim0_cc2 #1 le- tim0_out0 #5 le- tim0_out1 #4 pcnt0_s0in #5 pcnt0_s1in #4 us0_tx #5 us0_rx #4 us0_clk #3 us0_cs #2 us0_cts #1 us0_rts #0 us1_tx #5 us1_rx #4 us1_clk #3 us1_cs #2 us1_cts #1 us1_rts #0 us2_tx #0 us2_rx #31 us2_clk #30 us2_cs #29 us2_cts #28 us2_rts #27 leu0_tx #5 leu0_rx #4 i2c0_sda #5 i2c0_scl #4 frc_dclk #5 frc_dout #4 frc_dframe #3 modem_dclk #5 modem_din #4 modem_dout #3 modem_ant0 #2 modem_ant1 #1 cmu_clki0 #4 prs_ch6 #5 prs_ch7 #4 prs_ch8 #3 prs_ch9 #2 acmp0_o #5 acmp1_o #5 les_ch13 etm_tclk #1 pa4 vdac0_out1alt / opa1_outalt #2 busdy buscx opa0_n tim0_cc0 #4 tim0_cc1 #3 tim0_cc2 #2 tim0_cdti0 #1 tim0_cdti1 #0 tim0_cdti2 #31 tim1_cc0 #4 tim1_cc1 #3 tim1_cc2 #2 tim1_cc3 #1 wtim0_cc0 #4 wtim0_cc1 #2 wtim0_cc2 #0 le- tim0_out0 #4 le- tim0_out1 #3 pcnt0_s0in #4 pcnt0_s1in #3 us0_tx #4 us0_rx #3 us0_clk #2 us0_cs #1 us0_cts #0 us0_rts #31 us1_tx #4 us1_rx #3 us1_clk #2 us1_cs #1 us1_cts #0 us1_rts #31 leu0_tx #4 leu0_rx #3 i2c0_sda #4 i2c0_scl #3 frc_dclk #4 frc_dout #3 frc_dframe #2 modem_dclk #4 modem_din #3 modem_dout #2 modem_ant0 #1 modem_ant1 #0 prs_ch6 #4 prs_ch7 #3 prs_ch8 #2 prs_ch9 #1 acmp0_o #4 acmp1_o #4 les_ch12 pa3 buscy busdx vdac0_out0 / opa0_out tim0_cc0 #3 tim0_cc1 #2 tim0_cc2 #1 tim0_cdti0 #0 tim0_cdti1 #31 tim0_cdti2 #30 tim1_cc0 #3 tim1_cc1 #2 tim1_cc2 #1 tim1_cc3 #0 wtim0_cc0 #3 wtim0_cc1 #1 le- tim0_out0 #3 le- tim0_out1 #2 pcnt0_s0in #3 pcnt0_s1in #2 us0_tx #3 us0_rx #2 us0_clk #1 us0_cs #0 us0_cts #31 us0_rts #30 us1_tx #3 us1_rx #2 us1_clk #1 us1_cs #0 us1_cts #31 us1_rts #30 leu0_tx #3 leu0_rx #2 i2c0_sda #3 i2c0_scl #2 frc_dclk #3 frc_dout #2 frc_dframe #1 modem_dclk #3 modem_din #2 modem_dout #1 modem_ant0 #0 modem_ant1 #31 prs_ch6 #3 prs_ch7 #2 prs_ch8 #1 prs_ch9 #0 acmp0_o #3 acmp1_o #3 les_ch11 gpio_em4wu8 efr32bg12 blue gecko bluetooth ? low energy soc family data sheet pin definitions silabs.com | building a more connected world. rev. 1.0 | 138
gpio name pin alternate functionality / description analog timers communication radio other pa2 vdac0_out1alt / opa1_outalt #1 busdy buscx opa0_p tim0_cc0 #2 tim0_cc1 #1 tim0_cc2 #0 tim0_cdti0 #31 tim0_cdti1 #30 tim0_cdti2 #29 tim1_cc0 #2 tim1_cc1 #1 tim1_cc2 #0 tim1_cc3 #31 wtim0_cc0 #2 wtim0_cc1 #0 le- tim0_out0 #2 le- tim0_out1 #1 pcnt0_s0in #2 pcnt0_s1in #1 us0_tx #2 us0_rx #1 us0_clk #0 us0_cs #31 us0_cts #30 us0_rts #29 us1_tx #2 us1_rx #1 us1_clk #0 us1_cs #31 us1_cts #30 us1_rts #29 leu0_tx #2 leu0_rx #1 i2c0_sda #2 i2c0_scl #1 frc_dclk #2 frc_dout #1 frc_dframe #0 modem_dclk #2 modem_din #1 modem_dout #0 modem_ant0 #31 modem_ant1 #30 prs_ch6 #2 prs_ch7 #1 prs_ch8 #0 prs_ch9 #10 acmp0_o #2 acmp1_o #2 les_ch10 pa1 buscy busdx adc0_extp vdac0_ext tim0_cc0 #1 tim0_cc1 #0 tim0_cc2 #31 tim0_cdti0 #30 tim0_cdti1 #29 tim0_cdti2 #28 tim1_cc0 #1 tim1_cc1 #0 tim1_cc2 #31 tim1_cc3 #30 wtim0_cc0 #1 le- tim0_out0 #1 le- tim0_out1 #0 pcnt0_s0in #1 pcnt0_s1in #0 us0_tx #1 us0_rx #0 us0_clk #31 us0_cs #30 us0_cts #29 us0_rts #28 us1_tx #1 us1_rx #0 us1_clk #31 us1_cs #30 us1_cts #29 us1_rts #28 leu0_tx #1 leu0_rx #0 i2c0_sda #1 i2c0_scl #0 frc_dclk #1 frc_dout #0 frc_dframe #31 modem_dclk #1 modem_din #0 modem_dout #31 modem_ant0 #30 modem_ant1 #29 cmu_clk0 #0 prs_ch6 #1 prs_ch7 #0 prs_ch8 #10 prs_ch9 #9 acmp0_o #1 acmp1_o #1 les_ch9 pd9 buscy busdx tim0_cc0 #17 tim0_cc1 #16 tim0_cc2 #15 tim0_cdti0 #14 tim0_cdti1 #13 tim0_cdti2 #12 tim1_cc0 #17 tim1_cc1 #16 tim1_cc2 #15 tim1_cc3 #14 wtim0_cc1 #31 wtim0_cc2 #29 wtim0_cdti0 #25 wtim0_cdti1 #23 wtim0_cdti2 #21 wtim1_cc0 #17 wtim1_cc1 #15 wtim1_cc2 #13 wtim1_cc3 #11 le- tim0_out0 #17 le- tim0_out1 #16 pcnt0_s0in #17 pcnt0_s1in #16 us0_tx #17 us0_rx #16 us0_clk #15 us0_cs #14 us0_cts #13 us0_rts #12 us1_tx #17 us1_rx #16 us1_clk #15 us1_cs #14 us1_cts #13 us1_rts #12 us3_tx #1 us3_rx #0 us3_clk #31 us3_cs #30 us3_cts #29 us3_rts #28 leu0_tx #17 leu0_rx #16 i2c0_sda #17 i2c0_scl #16 frc_dclk #17 frc_dout #16 frc_dframe #15 modem_dclk #17 modem_din #16 modem_dout #15 modem_ant0 #14 modem_ant1 #13 cmu_clk0 #4 prs_ch3 #8 prs_ch4 #0 prs_ch5 #6 prs_ch6 #11 acmp0_o #17 acmp1_o #17 les_ch1 efr32bg12 blue gecko bluetooth ? low energy soc family data sheet pin definitions silabs.com | building a more connected world. rev. 1.0 | 139
gpio name pin alternate functionality / description analog timers communication radio other pd11 buscy busdx tim0_cc0 #19 tim0_cc1 #18 tim0_cc2 #17 tim0_cdti0 #16 tim0_cdti1 #15 tim0_cdti2 #14 tim1_cc0 #19 tim1_cc1 #18 tim1_cc2 #17 tim1_cc3 #16 wtim0_cc2 #31 wtim0_cdti0 #27 wtim0_cdti1 #25 wtim0_cdti2 #23 wtim1_cc0 #19 wtim1_cc1 #17 wtim1_cc2 #15 wtim1_cc3 #13 le- tim0_out0 #19 le- tim0_out1 #18 pcnt0_s0in #19 pcnt0_s1in #18 us0_tx #19 us0_rx #18 us0_clk #17 us0_cs #16 us0_cts #15 us0_rts #14 us1_tx #19 us1_rx #18 us1_clk #17 us1_cs #16 us1_cts #15 us1_rts #14 us3_tx #3 us3_rx #2 us3_clk #1 us3_cs #0 us3_cts #31 us3_rts #30 leu0_tx #19 leu0_rx #18 i2c0_sda #19 i2c0_scl #18 frc_dclk #19 frc_dout #18 frc_dframe #17 modem_dclk #19 modem_din #18 modem_dout #17 modem_ant0 #16 modem_ant1 #15 prs_ch3 #10 prs_ch4 #2 prs_ch5 #1 prs_ch6 #13 acmp0_o #19 acmp1_o #19 les_ch3 pd13 vdac0_out0alt / opa0_outalt #1 buscy busdx opa1_p tim0_cc0 #21 tim0_cc1 #20 tim0_cc2 #19 tim0_cdti0 #18 tim0_cdti1 #17 tim0_cdti2 #16 tim1_cc0 #21 tim1_cc1 #20 tim1_cc2 #19 tim1_cc3 #18 wtim0_cdti0 #29 wtim0_cdti1 #27 wtim0_cdti2 #25 wtim1_cc0 #21 wtim1_cc1 #19 wtim1_cc2 #17 wtim1_cc3 #15 le- tim0_out0 #21 le- tim0_out1 #20 pcnt0_s0in #21 pcnt0_s1in #20 us0_tx #21 us0_rx #20 us0_clk #19 us0_cs #18 us0_cts #17 us0_rts #16 us1_tx #21 us1_rx #20 us1_clk #19 us1_cs #18 us1_cts #17 us1_rts #16 us3_tx #5 us3_rx #4 us3_clk #3 us3_cs #2 us3_cts #1 us3_rts #0 leu0_tx #21 leu0_rx #20 i2c0_sda #21 i2c0_scl #20 frc_dclk #21 frc_dout #20 frc_dframe #19 modem_dclk #21 modem_din #20 modem_dout #19 modem_ant0 #18 modem_ant1 #17 prs_ch3 #12 prs_ch4 #4 prs_ch5 #3 prs_ch6 #15 acmp0_o #21 acmp1_o #21 les_ch5 pa0 busdy buscx adc0_extn tim0_cc0 #0 tim0_cc1 #31 tim0_cc2 #30 tim0_cdti0 #29 tim0_cdti1 #28 tim0_cdti2 #27 tim1_cc0 #0 tim1_cc1 #31 tim1_cc2 #30 tim1_cc3 #29 wtim0_cc0 #0 le- tim0_out0 #0 le- tim0_out1 #31 pcnt0_s0in #0 pcnt0_s1in #31 us0_tx #0 us0_rx #31 us0_clk #30 us0_cs #29 us0_cts #28 us0_rts #27 us1_tx #0 us1_rx #31 us1_clk #30 us1_cs #29 us1_cts #28 us1_rts #27 leu0_tx #0 leu0_rx #31 i2c0_sda #0 i2c0_scl #31 frc_dclk #0 frc_dout #31 frc_dframe #30 modem_dclk #0 modem_din #31 modem_dout #30 modem_ant0 #29 modem_ant1 #28 cmu_clk1 #0 prs_ch6 #0 prs_ch7 #10 prs_ch8 #9 prs_ch9 #8 acmp0_o #0 acmp1_o #0 les_ch8 efr32bg12 blue gecko bluetooth ? low energy soc family data sheet pin definitions silabs.com | building a more connected world. rev. 1.0 | 140
gpio name pin alternate functionality / description analog timers communication radio other pd8 busdy buscx wtim0_cc1 #30 wtim0_cc2 #28 wtim0_cdti0 #24 wtim0_cdti1 #22 wtim0_cdti2 #20 wtim1_cc0 #16 wtim1_cc1 #14 wtim1_cc2 #12 wtim1_cc3 #10 us3_tx #0 us3_rx #31 us3_clk #30 us3_cs #29 us3_cts #28 us3_rts #27 les_ch0 pd10 busdy buscx tim0_cc0 #18 tim0_cc1 #17 tim0_cc2 #16 tim0_cdti0 #15 tim0_cdti1 #14 tim0_cdti2 #13 tim1_cc0 #18 tim1_cc1 #17 tim1_cc2 #16 tim1_cc3 #15 wtim0_cc2 #30 wtim0_cdti0 #26 wtim0_cdti1 #24 wtim0_cdti2 #22 wtim1_cc0 #18 wtim1_cc1 #16 wtim1_cc2 #14 wtim1_cc3 #12 le- tim0_out0 #18 le- tim0_out1 #17 pcnt0_s0in #18 pcnt0_s1in #17 us0_tx #18 us0_rx #17 us0_clk #16 us0_cs #15 us0_cts #14 us0_rts #13 us1_tx #18 us1_rx #17 us1_clk #16 us1_cs #15 us1_cts #14 us1_rts #13 us3_tx #2 us3_rx #1 us3_clk #0 us3_cs #31 us3_cts #30 us3_rts #29 leu0_tx #18 leu0_rx #17 i2c0_sda #18 i2c0_scl #17 frc_dclk #18 frc_dout #17 frc_dframe #16 modem_dclk #18 modem_din #17 modem_dout #16 modem_ant0 #15 modem_ant1 #14 cmu_clk1 #4 prs_ch3 #9 prs_ch4 #1 prs_ch5 #0 prs_ch6 #12 acmp0_o #18 acmp1_o #18 les_ch2 pd12 vdac0_out1alt / opa1_outalt #0 busdy buscx tim0_cc0 #20 tim0_cc1 #19 tim0_cc2 #18 tim0_cdti0 #17 tim0_cdti1 #16 tim0_cdti2 #15 tim1_cc0 #20 tim1_cc1 #19 tim1_cc2 #18 tim1_cc3 #17 wtim0_cdti0 #28 wtim0_cdti1 #26 wtim0_cdti2 #24 wtim1_cc0 #20 wtim1_cc1 #18 wtim1_cc2 #16 wtim1_cc3 #14 le- tim0_out0 #20 le- tim0_out1 #19 pcnt0_s0in #20 pcnt0_s1in #19 us0_tx #20 us0_rx #19 us0_clk #18 us0_cs #17 us0_cts #16 us0_rts #15 us1_tx #20 us1_rx #19 us1_clk #18 us1_cs #17 us1_cts #16 us1_rts #15 us3_tx #4 us3_rx #3 us3_clk #2 us3_cs #1 us3_cts #0 us3_rts #31 leu0_tx #20 leu0_rx #19 i2c0_sda #20 i2c0_scl #19 frc_dclk #20 frc_dout #19 frc_dframe #18 modem_dclk #20 modem_din #19 modem_dout #18 modem_ant0 #17 modem_ant1 #16 prs_ch3 #11 prs_ch4 #3 prs_ch5 #2 prs_ch6 #14 acmp0_o #20 acmp1_o #20 les_ch4 efr32bg12 blue gecko bluetooth ? low energy soc family data sheet pin definitions silabs.com | building a more connected world. rev. 1.0 | 141
gpio name pin alternate functionality / description analog timers communication radio other pd14 busdy buscx vdac0_out1 / opa1_out tim0_cc0 #22 tim0_cc1 #21 tim0_cc2 #20 tim0_cdti0 #19 tim0_cdti1 #18 tim0_cdti2 #17 tim1_cc0 #22 tim1_cc1 #21 tim1_cc2 #20 tim1_cc3 #19 wtim0_cdti0 #30 wtim0_cdti1 #28 wtim0_cdti2 #26 wtim1_cc0 #22 wtim1_cc1 #20 wtim1_cc2 #18 wtim1_cc3 #16 le- tim0_out0 #22 le- tim0_out1 #21 pcnt0_s0in #22 pcnt0_s1in #21 us0_tx #22 us0_rx #21 us0_clk #20 us0_cs #19 us0_cts #18 us0_rts #17 us1_tx #22 us1_rx #21 us1_clk #20 us1_cs #19 us1_cts #18 us1_rts #17 us3_tx #6 us3_rx #5 us3_clk #4 us3_cs #3 us3_cts #2 us3_rts #1 leu0_tx #22 leu0_rx #21 i2c0_sda #22 i2c0_scl #21 frc_dclk #22 frc_dout #21 frc_dframe #20 modem_dclk #22 modem_din #21 modem_dout #20 modem_ant0 #19 modem_ant1 #18 cmu_clk0 #5 prs_ch3 #13 prs_ch4 #5 prs_ch5 #4 prs_ch6 #16 acmp0_o #22 acmp1_o #22 les_ch6 gpio_em4wu4 pd15 vdac0_out0alt / opa0_outalt #2 buscy busdx opa1_n tim0_cc0 #23 tim0_cc1 #22 tim0_cc2 #21 tim0_cdti0 #20 tim0_cdti1 #19 tim0_cdti2 #18 tim1_cc0 #23 tim1_cc1 #22 tim1_cc2 #21 tim1_cc3 #20 wtim0_cdti0 #31 wtim0_cdti1 #29 wtim0_cdti2 #27 wtim1_cc0 #23 wtim1_cc1 #21 wtim1_cc2 #19 wtim1_cc3 #17 le- tim0_out0 #23 le- tim0_out1 #22 pcnt0_s0in #23 pcnt0_s1in #22 us0_tx #23 us0_rx #22 us0_clk #21 us0_cs #20 us0_cts #19 us0_rts #18 us1_tx #23 us1_rx #22 us1_clk #21 us1_cs #20 us1_cts #19 us1_rts #18 us3_tx #7 us3_rx #6 us3_clk #5 us3_cs #4 us3_cts #3 us3_rts #2 leu0_tx #23 leu0_rx #22 i2c0_sda #23 i2c0_scl #22 frc_dclk #23 frc_dout #22 frc_dframe #21 modem_dclk #23 modem_din #22 modem_dout #21 modem_ant0 #20 modem_ant1 #19 cmu_clk1 #5 prs_ch3 #14 prs_ch4 #6 prs_ch5 #5 prs_ch6 #17 acmp0_o #23 acmp1_o #23 les_ch7 dbg_swo #2 efr32bg12 blue gecko bluetooth ? low energy soc family data sheet pin definitions silabs.com | building a more connected world. rev. 1.0 | 142
6.6 alternate functionality overview a wide selection of alternate functionality is available for multiplexing to various pins. the following table shows the name of the alter- nate functionality in the first column, followed by columns showing the possible location bitfield settings and the associated gpio pin. refer to 6.5 gpio functionality table for a list of functions available on each gpio pin. note: some functionality, such as analog interfaces, do not have alternate settings or a location bitfield. in these cases, the pinout is shown in the column corresponding to location 0. table 6.6. alternate functionality overview alternate location functionality 0 - 3 4 - 7 8 - 11 12 - 15 16 - 19 20 - 23 24 - 27 28 - 31 description acmp0_o 0: pa0 1: pa1 2: pa2 3: pa3 4: pa4 5: pa5 6: pb11 7: pb12 8: pb13 9: pb14 10: pb15 11: pc6 12: pc7 13: pc8 14: pc9 15: pc10 16: pc11 17: pd9 18: pd10 19: pd11 20: pd12 21: pd13 22: pd14 23: pd15 24: pf0 25: pf1 26: pf2 27: pf3 28: pf4 29: pf5 30: pf6 31: pf7 analog comparator acmp0, digital out- put. acmp1_o 0: pa0 1: pa1 2: pa2 3: pa3 4: pa4 5: pa5 6: pb11 7: pb12 8: pb13 9: pb14 10: pb15 11: pc6 12: pc7 13: pc8 14: pc9 15: pc10 16: pc11 17: pd9 18: pd10 19: pd11 20: pd12 21: pd13 22: pd14 23: pd15 24: pf0 25: pf1 26: pf2 27: pf3 28: pf4 29: pf5 30: pf6 31: pf7 analog comparator acmp1, digital out- put. adc0_extn 0: pa0 analog to digital converter adc0 ex- ternal reference in- put negative pin. adc0_extp 0: pa1 analog to digital converter adc0 ex- ternal reference in- put positive pin. boot_rx 0: pf1 bootloader rx. boot_tx 0: pf0 bootloader tx. cmu_clk0 0: pa1 1: pb15 2: pc6 3: pc11 4: pd9 5: pd14 6: pf2 7: pf7 clock management unit, clock output number 0. cmu_clk1 0: pa0 1: pb14 2: pc7 3: pc10 4: pd10 5: pd15 6: pf3 7: pf6 clock management unit, clock output number 1. cmu_clki0 0: pb13 1: pf7 2: pc6 3: pb6 4: pa5 clock management unit, clock output number i0. efr32bg12 blue gecko bluetooth ? low energy soc family data sheet pin definitions silabs.com | building a more connected world. rev. 1.0 | 143
alternate location functionality 0 - 3 4 - 7 8 - 11 12 - 15 16 - 19 20 - 23 24 - 27 28 - 31 description dbg_swclktck 0: pf0 debug-interface serial wire clock input and jtag test clock. note that this func- tion is enabled to the pin out of reset, and has a built-in pull down. dbg_swdiotms 0: pf1 debug-interface serial wire data in- put / output and jtag test mode select. note that this func- tion is enabled to the pin out of reset, and has a built-in pull up. dbg_swo 0: pf2 1: pb13 2: pd15 3: pc11 debug-interface serial wire viewer output. note that this func- tion is not enabled after reset, and must be enabled by software to be used. dbg_tdi 0: pf3 debug-interface jtag test data in. note that this func- tion is enabled to pin out of reset, and has a built-in pull up. dbg_tdo 0: pf2 debug-interface jtag test data out. note that this func- tion is enabled to pin out of reset. etm_tclk 0: pf8 1: pa5 2: pi2 3: pc6 embedded trace module etm clock . etm_td0 0: pf9 1: pa6 2: pi3 3: pc7 embedded trace module etm data 0. etm_td1 0: pf10 1: pa7 2: pb6 3: pc8 embedded trace module etm data 1. efr32bg12 blue gecko bluetooth ? low energy soc family data sheet pin definitions silabs.com | building a more connected world. rev. 1.0 | 144
alternate location functionality 0 - 3 4 - 7 8 - 11 12 - 15 16 - 19 20 - 23 24 - 27 28 - 31 description etm_td2 0: pf11 1: pa8 2: pb7 3: pc9 embedded trace module etm data 2. etm_td3 0: pf12 1: pa9 2: pb8 3: pc10 embedded trace module etm data 3. frc_dclk 0: pa0 1: pa1 2: pa2 3: pa3 4: pa4 5: pa5 6: pb11 7: pb12 8: pb13 9: pb14 10: pb15 11: pc6 12: pc7 13: pc8 14: pc9 15: pc10 16: pc11 17: pd9 18: pd10 19: pd11 20: pd12 21: pd13 22: pd14 23: pd15 24: pf0 25: pf1 26: pf2 27: pf3 28: pf4 29: pf5 30: pf6 31: pf7 frame controller, data sniffer clock. frc_dframe 0: pa2 1: pa3 2: pa4 3: pa5 4: pb11 5: pb12 6: pb13 7: pb14 8: pb15 9: pc6 10: pc7 11: pc8 12: pc9 13: pc10 14: pc11 15: pd9 16: pd10 17: pd11 18: pd12 19: pd13 20: pd14 21: pd15 22: pf0 23: pf1 24: pf2 25: pf3 26: pf4 27: pf5 28: pf6 29: pf7 30: pa0 31: pa1 frame controller, data sniffer frame active frc_dout 0: pa1 1: pa2 2: pa3 3: pa4 4: pa5 5: pb11 6: pb12 7: pb13 8: pb14 9: pb15 10: pc6 11: pc7 12: pc8 13: pc9 14: pc10 15: pc11 16: pd9 17: pd10 18: pd11 19: pd12 20: pd13 21: pd14 22: pd15 23: pf0 24: pf1 25: pf2 26: pf3 27: pf4 28: pf5 29: pf6 30: pf7 31: pa0 frame controller, data sniffer out- put. gpio_em4wu0 0: pf2 pin can be used to wake the system up from em4 gpio_em4wu1 0: pf7 pin can be used to wake the system up from em4 gpio_em4wu4 0: pd14 pin can be used to wake the system up from em4 gpio_em4wu8 0: pa3 pin can be used to wake the system up from em4 gpio_em4wu9 0: pb13 pin can be used to wake the system up from em4 gpio_em4wu12 0: pc10 pin can be used to wake the system up from em4 i2c0_scl 0: pa1 1: pa2 2: pa3 3: pa4 4: pa5 5: pb11 6: pb12 7: pb13 8: pb14 9: pb15 10: pc6 11: pc7 12: pc8 13: pc9 14: pc10 15: pc11 16: pd9 17: pd10 18: pd11 19: pd12 20: pd13 21: pd14 22: pd15 23: pf0 24: pf1 25: pf2 26: pf3 27: pf4 28: pf5 29: pf6 30: pf7 31: pa0 i2c0 serial clock line input / output. i2c0_sda 0: pa0 1: pa1 2: pa2 3: pa3 4: pa4 5: pa5 6: pb11 7: pb12 8: pb13 9: pb14 10: pb15 11: pc6 12: pc7 13: pc8 14: pc9 15: pc10 16: pc11 17: pd9 18: pd10 19: pd11 20: pd12 21: pd13 22: pd14 23: pd15 24: pf0 25: pf1 26: pf2 27: pf3 28: pf4 29: pf5 30: pf6 31: pf7 i2c0 serial data in- put / output. efr32bg12 blue gecko bluetooth ? low energy soc family data sheet pin definitions silabs.com | building a more connected world. rev. 1.0 | 145
alternate location functionality 0 - 3 4 - 7 8 - 11 12 - 15 16 - 19 20 - 23 24 - 27 28 - 31 description i2c1_scl 0: pa7 1: pa8 2: pa9 3: pi2 4: pi3 5: pb6 6: pb7 7: pb8 8: pb9 9: pb10 10: pj14 11: pj15 12: pc0 13: pc1 14: pc2 15: pc3 16: pc4 17: pc5 18: pc10 19: pc11 20: pf8 21: pf9 22: pf10 23: pf11 24: pf12 25: pf13 26: pf14 27: pf15 28: pk0 29: pk1 30: pk2 31: pa6 i2c1 serial clock line input / output. i2c1_sda 0: pa6 1: pa7 2: pa8 3: pa9 4: pi2 5: pi3 6: pb6 7: pb7 8: pb8 9: pb9 10: pb10 11: pj14 12: pj15 13: pc0 14: pc1 15: pc2 16: pc3 17: pc4 18: pc5 19: pc10 20: pc11 21: pf8 22: pf9 23: pf10 24: pf11 25: pf12 26: pf13 27: pf14 28: pf15 29: pk0 30: pk1 31: pk2 i2c1 serial data in- put / output. idac0_out 0: pk0 idac0 output. les_altex0 0: pa8 lesense alternate excite output 0. les_altex1 0: pa9 lesense alternate excite output 1. les_altex2 0: pj14 lesense alternate excite output 2. les_altex3 0: pj15 lesense alternate excite output 3. les_altex4 0: pi0 lesense alternate excite output 4. les_altex5 0: pi1 lesense alternate excite output 5. les_altex6 0: pi2 lesense alternate excite output 6. les_altex7 0: pi3 lesense alternate excite output 7. les_ch0 0: pd8 lesense channel 0. les_ch1 0: pd9 lesense channel 1. efr32bg12 blue gecko bluetooth ? low energy soc family data sheet pin definitions silabs.com | building a more connected world. rev. 1.0 | 146
alternate location functionality 0 - 3 4 - 7 8 - 11 12 - 15 16 - 19 20 - 23 24 - 27 28 - 31 description les_ch2 0: pd10 lesense channel 2. les_ch3 0: pd11 lesense channel 3. les_ch4 0: pd12 lesense channel 4. les_ch5 0: pd13 lesense channel 5. les_ch6 0: pd14 lesense channel 6. les_ch7 0: pd15 lesense channel 7. les_ch8 0: pa0 lesense channel 8. les_ch9 0: pa1 lesense channel 9. les_ch10 0: pa2 lesense channel 10. les_ch11 0: pa3 lesense channel 11. les_ch12 0: pa4 lesense channel 12. les_ch13 0: pa5 lesense channel 13. les_ch14 0: pa6 lesense channel 14. efr32bg12 blue gecko bluetooth ? low energy soc family data sheet pin definitions silabs.com | building a more connected world. rev. 1.0 | 147
alternate location functionality 0 - 3 4 - 7 8 - 11 12 - 15 16 - 19 20 - 23 24 - 27 28 - 31 description les_ch15 0: pa7 lesense channel 15. letim0_out0 0: pa0 1: pa1 2: pa2 3: pa3 4: pa4 5: pa5 6: pb11 7: pb12 8: pb13 9: pb14 10: pb15 11: pc6 12: pc7 13: pc8 14: pc9 15: pc10 16: pc11 17: pd9 18: pd10 19: pd11 20: pd12 21: pd13 22: pd14 23: pd15 24: pf0 25: pf1 26: pf2 27: pf3 28: pf4 29: pf5 30: pf6 31: pf7 low energy timer letim0, output channel 0. letim0_out1 0: pa1 1: pa2 2: pa3 3: pa4 4: pa5 5: pb11 6: pb12 7: pb13 8: pb14 9: pb15 10: pc6 11: pc7 12: pc8 13: pc9 14: pc10 15: pc11 16: pd9 17: pd10 18: pd11 19: pd12 20: pd13 21: pd14 22: pd15 23: pf0 24: pf1 25: pf2 26: pf3 27: pf4 28: pf5 29: pf6 30: pf7 31: pa0 low energy timer letim0, output channel 1. leu0_rx 0: pa1 1: pa2 2: pa3 3: pa4 4: pa5 5: pb11 6: pb12 7: pb13 8: pb14 9: pb15 10: pc6 11: pc7 12: pc8 13: pc9 14: pc10 15: pc11 16: pd9 17: pd10 18: pd11 19: pd12 20: pd13 21: pd14 22: pd15 23: pf0 24: pf1 25: pf2 26: pf3 27: pf4 28: pf5 29: pf6 30: pf7 31: pa0 leuart0 receive input. leu0_tx 0: pa0 1: pa1 2: pa2 3: pa3 4: pa4 5: pa5 6: pb11 7: pb12 8: pb13 9: pb14 10: pb15 11: pc6 12: pc7 13: pc8 14: pc9 15: pc10 16: pc11 17: pd9 18: pd10 19: pd11 20: pd12 21: pd13 22: pd14 23: pd15 24: pf0 25: pf1 26: pf2 27: pf3 28: pf4 29: pf5 30: pf6 31: pf7 leuart0 transmit output. also used as receive input in half duplex commu- nication. lfxtal_n 0: pb14 low frequency crystal (typically 32.768 khz) nega- tive pin. also used as an optional ex- ternal clock input pin. lfxtal_p 0: pb15 low frequency crystal (typically 32.768 khz) posi- tive pin. modem_ant0 0: pa3 1: pa4 2: pa5 3: pb11 4: pb12 5: pb13 6: pb14 7: pb15 8: pc6 9: pc7 10: pc8 11: pc9 12: pc10 13: pc11 14: pd9 15: pd10 16: pd11 17: pd12 18: pd13 19: pd14 20: pd15 21: pf0 22: pf1 23: pf2 24: pf3 25: pf4 26: pf5 27: pf6 28: pf7 29: pa0 30: pa1 31: pa2 modem antenna control output 0, used for antenna diversity. modem_ant1 0: pa4 1: pa5 2: pb11 3: pb12 4: pb13 5: pb14 6: pb15 7: pc6 8: pc7 9: pc8 10: pc9 11: pc10 12: pc11 13: pd9 14: pd10 15: pd11 16: pd12 17: pd13 18: pd14 19: pd15 20: pf0 21: pf1 22: pf2 23: pf3 24: pf4 25: pf5 26: pf6 27: pf7 28: pa0 29: pa1 30: pa2 31: pa3 modem antenna control output 1, used for antenna diversity. modem_dclk 0: pa0 1: pa1 2: pa2 3: pa3 4: pa4 5: pa5 6: pb11 7: pb12 8: pb13 9: pb14 10: pb15 11: pc6 12: pc7 13: pc8 14: pc9 15: pc10 16: pc11 17: pd9 18: pd10 19: pd11 20: pd12 21: pd13 22: pd14 23: pd15 24: pf0 25: pf1 26: pf2 27: pf3 28: pf4 29: pf5 30: pf6 31: pf7 modem data clock out. modem_din 0: pa1 1: pa2 2: pa3 3: pa4 4: pa5 5: pb11 6: pb12 7: pb13 8: pb14 9: pb15 10: pc6 11: pc7 12: pc8 13: pc9 14: pc10 15: pc11 16: pd9 17: pd10 18: pd11 19: pd12 20: pd13 21: pd14 22: pd15 23: pf0 24: pf1 25: pf2 26: pf3 27: pf4 28: pf5 29: pf6 30: pf7 31: pa0 modem data in. modem_dout 0: pa2 1: pa3 2: pa4 3: pa5 4: pb11 5: pb12 6: pb13 7: pb14 8: pb15 9: pc6 10: pc7 11: pc8 12: pc9 13: pc10 14: pc11 15: pd9 16: pd10 17: pd11 18: pd12 19: pd13 20: pd14 21: pd15 22: pf0 23: pf1 24: pf2 25: pf3 26: pf4 27: pf5 28: pf6 29: pf7 30: pa0 31: pa1 modem data out. efr32bg12 blue gecko bluetooth ? low energy soc family data sheet pin definitions silabs.com | building a more connected world. rev. 1.0 | 148
alternate location functionality 0 - 3 4 - 7 8 - 11 12 - 15 16 - 19 20 - 23 24 - 27 28 - 31 description opa0_n 0: pa4 operational amplifi- er 0 external nega- tive input. opa0_p 0: pa2 operational amplifi- er 0 external posi- tive input. opa1_n 0: pd15 operational amplifi- er 1 external nega- tive input. opa1_p 0: pd13 operational amplifi- er 1 external posi- tive input. opa2_n 0: pb13 operational amplifi- er 2 external nega- tive input. opa2_out 0: pb12 operational amplifi- er 2 output. opa2_outalt 0: pb9 1: pb10 operational amplifi- er 2 alternative out- put. opa2_p 0: pb11 operational amplifi- er 2 external posi- tive input. pcnt0_s0in 0: pa0 1: pa1 2: pa2 3: pa3 4: pa4 5: pa5 6: pb11 7: pb12 8: pb13 9: pb14 10: pb15 11: pc6 12: pc7 13: pc8 14: pc9 15: pc10 16: pc11 17: pd9 18: pd10 19: pd11 20: pd12 21: pd13 22: pd14 23: pd15 24: pf0 25: pf1 26: pf2 27: pf3 28: pf4 29: pf5 30: pf6 31: pf7 pulse counter pcnt0 input num- ber 0. pcnt0_s1in 0: pa1 1: pa2 2: pa3 3: pa4 4: pa5 5: pb11 6: pb12 7: pb13 8: pb14 9: pb15 10: pc6 11: pc7 12: pc8 13: pc9 14: pc10 15: pc11 16: pd9 17: pd10 18: pd11 19: pd12 20: pd13 21: pd14 22: pd15 23: pf0 24: pf1 25: pf2 26: pf3 27: pf4 28: pf5 29: pf6 30: pf7 31: pa0 pulse counter pcnt0 input num- ber 1. pcnt1_s0in 0: pa6 1: pa7 2: pa8 3: pa9 4: pi2 5: pi3 6: pb6 7: pb7 8: pb8 9: pb9 10: pb10 11: pj14 12: pj15 13: pc0 14: pc1 15: pc2 16: pc3 17: pc4 18: pc5 19: pf6 20: pf7 21: pf8 22: pf9 23: pf10 24: pf11 25: pf12 26: pf13 27: pf14 28: pf15 29: pk0 30: pk1 31: pk2 pulse counter pcnt1 input num- ber 0. pcnt1_s1in 0: pa7 1: pa8 2: pa9 3: pi2 4: pi3 5: pb6 6: pb7 7: pb8 8: pb9 9: pb10 10: pj14 11: pj15 12: pc0 13: pc1 14: pc2 15: pc3 16: pc4 17: pc5 18: pf6 19: pf7 20: pf8 21: pf9 22: pf10 23: pf11 24: pf12 25: pf13 26: pf14 27: pf15 28: pk0 29: pk1 30: pk2 31: pa6 pulse counter pcnt1 input num- ber 1. pcnt2_s0in 0: pa6 1: pa7 2: pa8 3: pa9 4: pi2 5: pi3 6: pb6 7: pb7 8: pb8 9: pb9 10: pb10 11: pj14 12: pj15 13: pc0 14: pc1 15: pc2 16: pc3 17: pc4 18: pc5 19: pc10 20: pc11 21: pf8 22: pf9 23: pf10 24: pf11 25: pf12 26: pf13 27: pf14 28: pf15 29: pk0 30: pk1 31: pk2 pulse counter pcnt2 input num- ber 0. efr32bg12 blue gecko bluetooth ? low energy soc family data sheet pin definitions silabs.com | building a more connected world. rev. 1.0 | 149
alternate location functionality 0 - 3 4 - 7 8 - 11 12 - 15 16 - 19 20 - 23 24 - 27 28 - 31 description pcnt2_s1in 0: pa7 1: pa8 2: pa9 3: pi2 4: pi3 5: pb6 6: pb7 7: pb8 8: pb9 9: pb10 10: pj14 11: pj15 12: pc0 13: pc1 14: pc2 15: pc3 16: pc4 17: pc5 18: pc10 19: pc11 20: pf8 21: pf9 22: pf10 23: pf11 24: pf12 25: pf13 26: pf14 27: pf15 28: pk0 29: pk1 30: pk2 31: pa6 pulse counter pcnt2 input num- ber 1. prs_ch0 0: pf0 1: pf1 2: pf2 3: pf3 4: pf4 5: pf5 6: pf6 7: pf7 8: pc6 9: pc7 10: pc8 11: pc9 12: pc10 13: pc11 peripheral reflex system prs, chan- nel 0. prs_ch1 0: pf1 1: pf2 2: pf3 3: pf4 4: pf5 5: pf6 6: pf7 7: pf0 peripheral reflex system prs, chan- nel 1. prs_ch2 0: pf2 1: pf3 2: pf4 3: pf5 4: pf6 5: pf7 6: pf0 7: pf1 peripheral reflex system prs, chan- nel 2. prs_ch3 0: pf3 1: pf4 2: pf5 3: pf6 4: pf7 5: pf0 6: pf1 7: pf2 8: pd9 9: pd10 10: pd11 11: pd12 12: pd13 13: pd14 14: pd15 peripheral reflex system prs, chan- nel 3. prs_ch4 0: pd9 1: pd10 2: pd11 3: pd12 4: pd13 5: pd14 6: pd15 peripheral reflex system prs, chan- nel 4. prs_ch5 0: pd10 1: pd11 2: pd12 3: pd13 4: pd14 5: pd15 6: pd9 peripheral reflex system prs, chan- nel 5. prs_ch6 0: pa0 1: pa1 2: pa2 3: pa3 4: pa4 5: pa5 6: pb11 7: pb12 8: pb13 9: pb14 10: pb15 11: pd9 12: pd10 13: pd11 14: pd12 15: pd13 16: pd14 17: pd15 peripheral reflex system prs, chan- nel 6. prs_ch7 0: pa1 1: pa2 2: pa3 3: pa4 4: pa5 5: pb11 6: pb12 7: pb13 8: pb14 9: pb15 10: pa0 peripheral reflex system prs, chan- nel 7. prs_ch8 0: pa2 1: pa3 2: pa4 3: pa5 4: pb11 5: pb12 6: pb13 7: pb14 8: pb15 9: pa0 10: pa1 peripheral reflex system prs, chan- nel 8. prs_ch9 0: pa3 1: pa4 2: pa5 3: pb11 4: pb12 5: pb13 6: pb14 7: pb15 8: pa0 9: pa1 10: pa2 11: pc6 12: pc7 13: pc8 14: pc9 15: pc10 16: pc11 peripheral reflex system prs, chan- nel 9. prs_ch10 0: pc6 1: pc7 2: pc8 3: pc9 4: pc10 5: pc11 peripheral reflex system prs, chan- nel 10. prs_ch11 0: pc7 1: pc8 2: pc9 3: pc10 4: pc11 5: pc6 peripheral reflex system prs, chan- nel 11. efr32bg12 blue gecko bluetooth ? low energy soc family data sheet pin definitions silabs.com | building a more connected world. rev. 1.0 | 150
alternate location functionality 0 - 3 4 - 7 8 - 11 12 - 15 16 - 19 20 - 23 24 - 27 28 - 31 description tim0_cc0 0: pa0 1: pa1 2: pa2 3: pa3 4: pa4 5: pa5 6: pb11 7: pb12 8: pb13 9: pb14 10: pb15 11: pc6 12: pc7 13: pc8 14: pc9 15: pc10 16: pc11 17: pd9 18: pd10 19: pd11 20: pd12 21: pd13 22: pd14 23: pd15 24: pf0 25: pf1 26: pf2 27: pf3 28: pf4 29: pf5 30: pf6 31: pf7 timer 0 capture compare input / output channel 0. tim0_cc1 0: pa1 1: pa2 2: pa3 3: pa4 4: pa5 5: pb11 6: pb12 7: pb13 8: pb14 9: pb15 10: pc6 11: pc7 12: pc8 13: pc9 14: pc10 15: pc11 16: pd9 17: pd10 18: pd11 19: pd12 20: pd13 21: pd14 22: pd15 23: pf0 24: pf1 25: pf2 26: pf3 27: pf4 28: pf5 29: pf6 30: pf7 31: pa0 timer 0 capture compare input / output channel 1. tim0_cc2 0: pa2 1: pa3 2: pa4 3: pa5 4: pb11 5: pb12 6: pb13 7: pb14 8: pb15 9: pc6 10: pc7 11: pc8 12: pc9 13: pc10 14: pc11 15: pd9 16: pd10 17: pd11 18: pd12 19: pd13 20: pd14 21: pd15 22: pf0 23: pf1 24: pf2 25: pf3 26: pf4 27: pf5 28: pf6 29: pf7 30: pa0 31: pa1 timer 0 capture compare input / output channel 2. tim0_cdti0 0: pa3 1: pa4 2: pa5 3: pb11 4: pb12 5: pb13 6: pb14 7: pb15 8: pc6 9: pc7 10: pc8 11: pc9 12: pc10 13: pc11 14: pd9 15: pd10 16: pd11 17: pd12 18: pd13 19: pd14 20: pd15 21: pf0 22: pf1 23: pf2 24: pf3 25: pf4 26: pf5 27: pf6 28: pf7 29: pa0 30: pa1 31: pa2 timer 0 compli- mentary dead time insertion channel 0. tim0_cdti1 0: pa4 1: pa5 2: pb11 3: pb12 4: pb13 5: pb14 6: pb15 7: pc6 8: pc7 9: pc8 10: pc9 11: pc10 12: pc11 13: pd9 14: pd10 15: pd11 16: pd12 17: pd13 18: pd14 19: pd15 20: pf0 21: pf1 22: pf2 23: pf3 24: pf4 25: pf5 26: pf6 27: pf7 28: pa0 29: pa1 30: pa2 31: pa3 timer 0 compli- mentary dead time insertion channel 1. tim0_cdti2 0: pa5 1: pb11 2: pb12 3: pb13 4: pb14 5: pb15 6: pc6 7: pc7 8: pc8 9: pc9 10: pc10 11: pc11 12: pd9 13: pd10 14: pd11 15: pd12 16: pd13 17: pd14 18: pd15 19: pf0 20: pf1 21: pf2 22: pf3 23: pf4 24: pf5 25: pf6 26: pf7 27: pa0 28: pa1 29: pa2 30: pa3 31: pa4 timer 0 compli- mentary dead time insertion channel 2. tim1_cc0 0: pa0 1: pa1 2: pa2 3: pa3 4: pa4 5: pa5 6: pb11 7: pb12 8: pb13 9: pb14 10: pb15 11: pc6 12: pc7 13: pc8 14: pc9 15: pc10 16: pc11 17: pd9 18: pd10 19: pd11 20: pd12 21: pd13 22: pd14 23: pd15 24: pf0 25: pf1 26: pf2 27: pf3 28: pf4 29: pf5 30: pf6 31: pf7 timer 1 capture compare input / output channel 0. tim1_cc1 0: pa1 1: pa2 2: pa3 3: pa4 4: pa5 5: pb11 6: pb12 7: pb13 8: pb14 9: pb15 10: pc6 11: pc7 12: pc8 13: pc9 14: pc10 15: pc11 16: pd9 17: pd10 18: pd11 19: pd12 20: pd13 21: pd14 22: pd15 23: pf0 24: pf1 25: pf2 26: pf3 27: pf4 28: pf5 29: pf6 30: pf7 31: pa0 timer 1 capture compare input / output channel 1. tim1_cc2 0: pa2 1: pa3 2: pa4 3: pa5 4: pb11 5: pb12 6: pb13 7: pb14 8: pb15 9: pc6 10: pc7 11: pc8 12: pc9 13: pc10 14: pc11 15: pd9 16: pd10 17: pd11 18: pd12 19: pd13 20: pd14 21: pd15 22: pf0 23: pf1 24: pf2 25: pf3 26: pf4 27: pf5 28: pf6 29: pf7 30: pa0 31: pa1 timer 1 capture compare input / output channel 2. tim1_cc3 0: pa3 1: pa4 2: pa5 3: pb11 4: pb12 5: pb13 6: pb14 7: pb15 8: pc6 9: pc7 10: pc8 11: pc9 12: pc10 13: pc11 14: pd9 15: pd10 16: pd11 17: pd12 18: pd13 19: pd14 20: pd15 21: pf0 22: pf1 23: pf2 24: pf3 25: pf4 26: pf5 27: pf6 28: pf7 29: pa0 30: pa1 31: pa2 timer 1 capture compare input / output channel 3. us0_clk 0: pa2 1: pa3 2: pa4 3: pa5 4: pb11 5: pb12 6: pb13 7: pb14 8: pb15 9: pc6 10: pc7 11: pc8 12: pc9 13: pc10 14: pc11 15: pd9 16: pd10 17: pd11 18: pd12 19: pd13 20: pd14 21: pd15 22: pf0 23: pf1 24: pf2 25: pf3 26: pf4 27: pf5 28: pf6 29: pf7 30: pa0 31: pa1 usart0 clock in- put / output. us0_cs 0: pa3 1: pa4 2: pa5 3: pb11 4: pb12 5: pb13 6: pb14 7: pb15 8: pc6 9: pc7 10: pc8 11: pc9 12: pc10 13: pc11 14: pd9 15: pd10 16: pd11 17: pd12 18: pd13 19: pd14 20: pd15 21: pf0 22: pf1 23: pf2 24: pf3 25: pf4 26: pf5 27: pf6 28: pf7 29: pa0 30: pa1 31: pa2 usart0 chip se- lect input / output. us0_cts 0: pa4 1: pa5 2: pb11 3: pb12 4: pb13 5: pb14 6: pb15 7: pc6 8: pc7 9: pc8 10: pc9 11: pc10 12: pc11 13: pd9 14: pd10 15: pd11 16: pd12 17: pd13 18: pd14 19: pd15 20: pf0 21: pf1 22: pf2 23: pf3 24: pf4 25: pf5 26: pf6 27: pf7 28: pa0 29: pa1 30: pa2 31: pa3 usart0 clear to send hardware flow control input. efr32bg12 blue gecko bluetooth ? low energy soc family data sheet pin definitions silabs.com | building a more connected world. rev. 1.0 | 151
alternate location functionality 0 - 3 4 - 7 8 - 11 12 - 15 16 - 19 20 - 23 24 - 27 28 - 31 description us0_rts 0: pa5 1: pb11 2: pb12 3: pb13 4: pb14 5: pb15 6: pc6 7: pc7 8: pc8 9: pc9 10: pc10 11: pc11 12: pd9 13: pd10 14: pd11 15: pd12 16: pd13 17: pd14 18: pd15 19: pf0 20: pf1 21: pf2 22: pf3 23: pf4 24: pf5 25: pf6 26: pf7 27: pa0 28: pa1 29: pa2 30: pa3 31: pa4 usart0 request to send hardware flow control output. us0_rx 0: pa1 1: pa2 2: pa3 3: pa4 4: pa5 5: pb11 6: pb12 7: pb13 8: pb14 9: pb15 10: pc6 11: pc7 12: pc8 13: pc9 14: pc10 15: pc11 16: pd9 17: pd10 18: pd11 19: pd12 20: pd13 21: pd14 22: pd15 23: pf0 24: pf1 25: pf2 26: pf3 27: pf4 28: pf5 29: pf6 30: pf7 31: pa0 usart0 asynchro- nous receive. usart0 synchro- nous mode master input / slave out- put (miso). us0_tx 0: pa0 1: pa1 2: pa2 3: pa3 4: pa4 5: pa5 6: pb11 7: pb12 8: pb13 9: pb14 10: pb15 11: pc6 12: pc7 13: pc8 14: pc9 15: pc10 16: pc11 17: pd9 18: pd10 19: pd11 20: pd12 21: pd13 22: pd14 23: pd15 24: pf0 25: pf1 26: pf2 27: pf3 28: pf4 29: pf5 30: pf6 31: pf7 usart0 asynchro- nous transmit. al- so used as receive input in half duplex communication. usart0 synchro- nous mode master output / slave in- put (mosi). us1_clk 0: pa2 1: pa3 2: pa4 3: pa5 4: pb11 5: pb12 6: pb13 7: pb14 8: pb15 9: pc6 10: pc7 11: pc8 12: pc9 13: pc10 14: pc11 15: pd9 16: pd10 17: pd11 18: pd12 19: pd13 20: pd14 21: pd15 22: pf0 23: pf1 24: pf2 25: pf3 26: pf4 27: pf5 28: pf6 29: pf7 30: pa0 31: pa1 usart1 clock in- put / output. us1_cs 0: pa3 1: pa4 2: pa5 3: pb11 4: pb12 5: pb13 6: pb14 7: pb15 8: pc6 9: pc7 10: pc8 11: pc9 12: pc10 13: pc11 14: pd9 15: pd10 16: pd11 17: pd12 18: pd13 19: pd14 20: pd15 21: pf0 22: pf1 23: pf2 24: pf3 25: pf4 26: pf5 27: pf6 28: pf7 29: pa0 30: pa1 31: pa2 usart1 chip se- lect input / output. us1_cts 0: pa4 1: pa5 2: pb11 3: pb12 4: pb13 5: pb14 6: pb15 7: pc6 8: pc7 9: pc8 10: pc9 11: pc10 12: pc11 13: pd9 14: pd10 15: pd11 16: pd12 17: pd13 18: pd14 19: pd15 20: pf0 21: pf1 22: pf2 23: pf3 24: pf4 25: pf5 26: pf6 27: pf7 28: pa0 29: pa1 30: pa2 31: pa3 usart1 clear to send hardware flow control input. us1_rts 0: pa5 1: pb11 2: pb12 3: pb13 4: pb14 5: pb15 6: pc6 7: pc7 8: pc8 9: pc9 10: pc10 11: pc11 12: pd9 13: pd10 14: pd11 15: pd12 16: pd13 17: pd14 18: pd15 19: pf0 20: pf1 21: pf2 22: pf3 23: pf4 24: pf5 25: pf6 26: pf7 27: pa0 28: pa1 29: pa2 30: pa3 31: pa4 usart1 request to send hardware flow control output. us1_rx 0: pa1 1: pa2 2: pa3 3: pa4 4: pa5 5: pb11 6: pb12 7: pb13 8: pb14 9: pb15 10: pc6 11: pc7 12: pc8 13: pc9 14: pc10 15: pc11 16: pd9 17: pd10 18: pd11 19: pd12 20: pd13 21: pd14 22: pd15 23: pf0 24: pf1 25: pf2 26: pf3 27: pf4 28: pf5 29: pf6 30: pf7 31: pa0 usart1 asynchro- nous receive. usart1 synchro- nous mode master input / slave out- put (miso). us1_tx 0: pa0 1: pa1 2: pa2 3: pa3 4: pa4 5: pa5 6: pb11 7: pb12 8: pb13 9: pb14 10: pb15 11: pc6 12: pc7 13: pc8 14: pc9 15: pc10 16: pc11 17: pd9 18: pd10 19: pd11 20: pd12 21: pd13 22: pd14 23: pd15 24: pf0 25: pf1 26: pf2 27: pf3 28: pf4 29: pf5 30: pf6 31: pf7 usart1 asynchro- nous transmit. al- so used as receive input in half duplex communication. usart1 synchro- nous mode master output / slave in- put (mosi). efr32bg12 blue gecko bluetooth ? low energy soc family data sheet pin definitions silabs.com | building a more connected world. rev. 1.0 | 152
alternate location functionality 0 - 3 4 - 7 8 - 11 12 - 15 16 - 19 20 - 23 24 - 27 28 - 31 description us2_clk 0: pa7 1: pa8 2: pa9 3: pi0 4: pi1 5: pi2 6: pi3 7: pb6 8: pb7 9: pb8 10: pb9 11: pb10 12: pf0 13: pf1 14: pf3 15: pf4 16: pf5 17: pf6 18: pf7 19: pf8 20: pf9 21: pf10 22: pf11 23: pf12 24: pf13 25: pf14 26: pf15 27: pk0 28: pk1 29: pk2 30: pa5 31: pa6 usart2 clock in- put / output. us2_cs 0: pa8 1: pa9 2: pi0 3: pi1 4: pi2 5: pi3 6: pb6 7: pb7 8: pb8 9: pb9 10: pb10 11: pf0 12: pf1 13: pf3 14: pf4 15: pf5 16: pf6 17: pf7 18: pf8 19: pf9 20: pf10 21: pf11 22: pf12 23: pf13 24: pf14 25: pf15 26: pk0 27: pk1 28: pk2 29: pa5 30: pa6 31: pa7 usart2 chip se- lect input / output. us2_cts 0: pa9 1: pi0 2: pi1 3: pi2 4: pi3 5: pb6 6: pb7 7: pb8 8: pb9 9: pb10 10: pf0 11: pf1 12: pf3 13: pf4 14: pf5 15: pf6 16: pf7 17: pf8 18: pf9 19: pf10 20: pf11 21: pf12 22: pf13 23: pf14 24: pf15 25: pk0 26: pk1 27: pk2 28: pa5 29: pa6 30: pa7 31: pa8 usart2 clear to send hardware flow control input. us2_rts 0: pi0 1: pi1 2: pi2 3: pi3 4: pb6 5: pb7 6: pb8 7: pb9 8: pb10 9: pf0 10: pf1 11: pf3 12: pf4 13: pf5 14: pf6 15: pf7 16: pf8 17: pf9 18: pf10 19: pf11 20: pf12 21: pf13 22: pf14 23: pf15 24: pk0 25: pk1 26: pk2 27: pa5 28: pa6 29: pa7 30: pa8 31: pa9 usart2 request to send hardware flow control output. us2_rx 0: pa6 1: pa7 2: pa8 3: pa9 4: pi0 5: pi1 6: pi2 7: pi3 8: pb6 9: pb7 10: pb8 11: pb9 12: pb10 13: pf0 14: pf1 15: pf3 16: pf4 17: pf5 18: pf6 19: pf7 20: pf8 21: pf9 22: pf10 23: pf11 24: pf12 25: pf13 26: pf14 27: pf15 28: pk0 29: pk1 30: pk2 31: pa5 usart2 asynchro- nous receive. usart2 synchro- nous mode master input / slave out- put (miso). us2_tx 0: pa5 1: pa6 2: pa7 3: pa8 4: pa9 5: pi0 6: pi1 7: pi2 8: pi3 9: pb6 10: pb7 11: pb8 12: pb9 13: pb10 14: pf0 15: pf1 16: pf3 17: pf4 18: pf5 19: pf6 20: pf7 21: pf8 22: pf9 23: pf10 24: pf11 25: pf12 26: pf13 27: pf14 28: pf15 29: pk0 30: pk1 31: pk2 usart2 asynchro- nous transmit. al- so used as receive input in half duplex communication. usart2 synchro- nous mode master output / slave in- put (mosi). us3_clk 0: pd10 1: pd11 2: pd12 3: pd13 4: pd14 5: pd15 6: pi2 7: pi3 8: pb6 9: pb7 10: pb8 11: pb9 12: pb10 13: pb11 14: pj14 15: pj15 16: pc0 17: pc1 18: pc2 19: pc3 20: pc4 21: pc5 22: pf11 23: pf12 24: pf13 25: pf14 26: pf15 27: pk0 28: pk1 29: pk2 30: pd8 31: pd9 usart3 clock in- put / output. us3_cs 0: pd11 1: pd12 2: pd13 3: pd14 4: pd15 5: pi2 6: pi3 7: pb6 8: pb7 9: pb8 10: pb9 11: pb10 12: pb11 13: pj14 14: pj15 15: pc0 16: pc1 17: pc2 18: pc3 19: pc4 20: pc5 21: pf11 22: pf12 23: pf13 24: pf14 25: pf15 26: pk0 27: pk1 28: pk2 29: pd8 30: pd9 31: pd10 usart3 chip se- lect input / output. us3_cts 0: pd12 1: pd13 2: pd14 3: pd15 4: pi2 5: pi3 6: pb6 7: pb7 8: pb8 9: pb9 10: pb10 11: pb11 12: pj14 13: pj15 14: pc0 15: pc1 16: pc2 17: pc3 18: pc4 19: pc5 20: pf11 21: pf12 22: pf13 23: pf14 24: pf15 25: pk0 26: pk1 27: pk2 28: pd8 29: pd9 30: pd10 31: pd11 usart3 clear to send hardware flow control input. us3_rts 0: pd13 1: pd14 2: pd15 3: pi2 4: pi3 5: pb6 6: pb7 7: pb8 8: pb9 9: pb10 10: pb11 11: pj14 12: pj15 13: pc0 14: pc1 15: pc2 16: pc3 17: pc4 18: pc5 19: pf11 20: pf12 21: pf13 22: pf14 23: pf15 24: pk0 25: pk1 26: pk2 27: pd8 28: pd9 29: pd10 30: pd11 31: pd12 usart3 request to send hardware flow control output. efr32bg12 blue gecko bluetooth ? low energy soc family data sheet pin definitions silabs.com | building a more connected world. rev. 1.0 | 153
alternate location functionality 0 - 3 4 - 7 8 - 11 12 - 15 16 - 19 20 - 23 24 - 27 28 - 31 description us3_rx 0: pd9 1: pd10 2: pd11 3: pd12 4: pd13 5: pd14 6: pd15 7: pi2 8: pi3 9: pb6 10: pb7 11: pb8 12: pb9 13: pb10 14: pb11 15: pj14 16: pj15 17: pc0 18: pc1 19: pc2 20: pc3 21: pc4 22: pc5 23: pf11 24: pf12 25: pf13 26: pf14 27: pf15 28: pk0 29: pk1 30: pk2 31: pd8 usart3 asynchro- nous receive. usart3 synchro- nous mode master input / slave out- put (miso). us3_tx 0: pd8 1: pd9 2: pd10 3: pd11 4: pd12 5: pd13 6: pd14 7: pd15 8: pi2 9: pi3 10: pb6 11: pb7 12: pb8 13: pb9 14: pb10 15: pb11 16: pj14 17: pj15 18: pc0 19: pc1 20: pc2 21: pc3 22: pc4 23: pc5 24: pf11 25: pf12 26: pf13 27: pf14 28: pf15 29: pk0 30: pk1 31: pk2 usart3 asynchro- nous transmit. al- so used as receive input in half duplex communication. usart3 synchro- nous mode master output / slave in- put (mosi). vdac0_ext 0: pa1 digital to analog converter vdac0 external reference input pin. vdac0_out0 / opa0_out 0: pa3 digital to analog converter dac0 output channel number 0. vdac0_out0al t / opa0_out- alt 0: pa5 1: pd13 2: pd15 digital to analog converter dac0 al- ternative output for channel 0. vdac0_out1 / opa1_out 0: pd14 digital to analog converter dac0 output channel number 1. vdac0_out1al t / opa1_out- alt 0: pd12 1: pa2 2: pa4 digital to analog converter dac0 al- ternative output for channel 1. wtim0_cc0 0: pa0 1: pa1 2: pa2 3: pa3 4: pa4 5: pa5 6: pa6 7: pa7 8: pa8 9: pa9 10: pb6 11: pb7 12: pb8 13: pb9 14: pb10 15: pb11 16: pb12 17: pb13 18: pb14 19: pb15 20: pc0 21: pc1 22: pc2 23: pc3 24: pc4 25: pc5 26: pc6 27: pc7 28: pc8 29: pc9 30: pc10 31: pc11 wide timer 0 cap- ture compare in- put / output channel 0. wtim0_cc1 0: pa2 1: pa3 2: pa4 3: pa5 4: pa6 5: pa7 6: pa8 7: pa9 8: pb6 9: pb7 10: pb8 11: pb9 12: pb10 13: pb11 14: pb12 15: pb13 16: pb14 17: pb15 18: pc0 19: pc1 20: pc2 21: pc3 22: pc4 23: pc5 24: pc6 25: pc7 26: pc8 27: pc9 28: pc10 29: pc11 30: pd8 31: pd9 wide timer 0 cap- ture compare in- put / output channel 1. wtim0_cc2 0: pa4 1: pa5 2: pa6 3: pa7 4: pa8 5: pa9 6: pb6 7: pb7 8: pb8 9: pb9 10: pb10 11: pb11 12: pb12 13: pb13 14: pb14 15: pb15 16: pc0 17: pc1 18: pc2 19: pc3 20: pc4 21: pc5 22: pc6 23: pc7 24: pc8 25: pc9 26: pc10 27: pc11 28: pd8 29: pd9 30: pd10 31: pd11 wide timer 0 cap- ture compare in- put / output channel 2. wtim0_cdti0 0: pa8 1: pa9 2: pb6 3: pb7 4: pb8 5: pb9 6: pb10 7: pb11 8: pb12 9: pb13 10: pb14 11: pb15 12: pc0 13: pc1 14: pc2 15: pc3 16: pc4 17: pc5 18: pc6 19: pc7 20: pc8 21: pc9 22: pc10 23: pc11 24: pd8 25: pd9 26: pd10 27: pd11 28: pd12 29: pd13 30: pd14 31: pd15 wide timer 0 com- plimentary dead time insertion channel 0. efr32bg12 blue gecko bluetooth ? low energy soc family data sheet pin definitions silabs.com | building a more connected world. rev. 1.0 | 154
alternate location functionality 0 - 3 4 - 7 8 - 11 12 - 15 16 - 19 20 - 23 24 - 27 28 - 31 description wtim0_cdti1 0: pb6 1: pb7 2: pb8 3: pb9 4: pb10 5: pb11 6: pb12 7: pb13 8: pb14 9: pb15 10: pc0 11: pc1 12: pc2 13: pc3 14: pc4 15: pc5 16: pc6 17: pc7 18: pc8 19: pc9 20: pc10 21: pc11 22: pd8 23: pd9 24: pd10 25: pd11 26: pd12 27: pd13 28: pd14 29: pd15 30: pf0 31: pf1 wide timer 0 com- plimentary dead time insertion channel 1. wtim0_cdti2 0: pb8 1: pb9 2: pb10 3: pb11 4: pb12 5: pb13 6: pb14 7: pb15 8: pc0 9: pc1 10: pc2 11: pc3 12: pc4 13: pc5 14: pc6 15: pc7 16: pc8 17: pc9 18: pc10 19: pc11 20: pd8 21: pd9 22: pd10 23: pd11 24: pd12 25: pd13 26: pd14 27: pd15 28: pf0 29: pf1 30: pf2 31: pf3 wide timer 0 com- plimentary dead time insertion channel 2. wtim1_cc0 0: pb12 1: pb13 2: pb14 3: pb15 4: pc0 5: pc1 6: pc2 7: pc3 8: pc4 9: pc5 10: pc6 11: pc7 12: pc8 13: pc9 14: pc10 15: pc11 16: pd8 17: pd9 18: pd10 19: pd11 20: pd12 21: pd13 22: pd14 23: pd15 24: pf0 25: pf1 26: pf2 27: pf3 28: pf4 29: pf5 30: pf6 31: pf7 wide timer 1 cap- ture compare in- put / output channel 0. wtim1_cc1 0: pb14 1: pb15 2: pc0 3: pc1 4: pc2 5: pc3 6: pc4 7: pc5 8: pc6 9: pc7 10: pc8 11: pc9 12: pc10 13: pc11 14: pd8 15: pd9 16: pd10 17: pd11 18: pd12 19: pd13 20: pd14 21: pd15 22: pf0 23: pf1 24: pf2 25: pf3 26: pf4 27: pf5 28: pf6 29: pf7 30: pf8 31: pf9 wide timer 1 cap- ture compare in- put / output channel 1. wtim1_cc2 0: pc0 1: pc1 2: pc2 3: pc3 4: pc4 5: pc5 6: pc6 7: pc7 8: pc8 9: pc9 10: pc10 11: pc11 12: pd8 13: pd9 14: pd10 15: pd11 16: pd12 17: pd13 18: pd14 19: pd15 20: pf0 21: pf1 22: pf2 23: pf3 24: pf4 25: pf5 26: pf6 27: pf7 28: pf8 29: pf9 30: pf10 31: pf11 wide timer 1 cap- ture compare in- put / output channel 2. wtim1_cc3 0: pc2 1: pc3 2: pc4 3: pc5 4: pc6 5: pc7 6: pc8 7: pc9 8: pc10 9: pc11 10: pd8 11: pd9 12: pd10 13: pd11 14: pd12 15: pd13 16: pd14 17: pd15 18: pf0 19: pf1 20: pf2 21: pf3 22: pf4 23: pf5 24: pf6 25: pf7 26: pf8 27: pf9 28: pf10 29: pf11 30: pf12 31: pf13 wide timer 1 cap- ture compare in- put / output channel 3. efr32bg12 blue gecko bluetooth ? low energy soc family data sheet pin definitions silabs.com | building a more connected world. rev. 1.0 | 155
6.7 analog port (aport) client maps the analog port (aport) is an infrastructure used to connect chip pins with on-chip analog clients such as analog comparators, adcs, dacs, etc. the aport consists of a set of shared buses, switches, and control logic needed to configurably implement the signal rout- ing. figure 6.5 aport connection diagram on page 156 shows the aport routing for this device family. a complete description of aport functionality can be found in the reference manual. pf0 pf1 pf2 pf3 pf8 pf9 pf10 pf11 pf12 pf13 pf14 pf15 pf4 pf5 pk0 pk1 pk2 pf6 pf7 pj14 pj15 pc0 pc1 pc2 pc3 pc4 pc5 pc11 pc10 pc9 pc8 pc7 pc6 pb13 pb12 pb11 vdac0_opa2alt pb10 pb9 pb8 pb7 pb6 vdac0_out0alt vdac0_out1alt pa4 opa0_inn0 opa0_out pa3 vdac0_out1alt pa2 pb15 pb14 pi3 pi2 pa9 pa8 pa7 pa6 pa5 pi1 pi0 vdac0_opa2alt opa0_inp0 pa1 adc0_extp pa0 adc0_extn opa0alt pd15 opa1_inn0 lesense lesense lesense lesense lesense lesense lesense lesense lesense pd14 opa1_out pd13 vdac0_out0alt opa1_inp0 vdac0_out1alt pd12 pd11 pd10 pd9 pd8 lesense lesense lesense lesense lesense lesense lesense ax ay bx by cx cy dx dy adc_extn adc_extp opa0_n out1 opa2_n out0 opa1n opa1_p out0alt out0alt out1alt out1alt alt1out out2 opa2_p out2alt out2alt adc1x adc1y acmp0x acmp0y acmp1x acmp1y idac0 1x 1y pos neg acmp1 1x 2x 3x 4x 1y 2y 3y 4y pos neg acmp0 1x 2x 3x 4x 1y 2y 3y 4y 1x pos neg adc0 1x 2x 3x 4x 1y 2y 3y 4y extp extn pos neg opa0 1x 2x 3x 4x 1y 2y 3y 4y 1x opa0_p opa0_n out0 out0alt out1 out2 out3 out4 out pos neg opa1 out 1x 2x 3x 4x 1y 2y 3y 4y 1x opa1_p opa1_n out1 out1alt out1 out2 out3 out4 pos neg opa2 1x 2x 3x 4x 1y 2y 3y 4y 1x opa2_p opa2_n out2 out2alt out1 out2 out3 out4 out 0x 0y 0x 0y 0x 0y opa0_p alt0out n x, n y aport n x, aport n y ax, by, busax, busby, ... adc0x, adc0y busadc0x, busadc0y acmp0x, acmp1y, busacmp0x, busacmp1y, ... cext 1x 1y 3x 3y csen cext_sense 2x 2y 4x 4y figure 6.5. aport connection diagram client maps for each analog circuit using the aport are shown in the following tables. the maps are organized by bus, and show the peripheral's port connection, the shared bus, and the connection from specific bus channel numbers to gpio pins. in general, enumerations for the pin selection field in an analog peripheral's register can be determined by finding the desired pin con- nection in the table and then combining the value in the port column (aport__), and the channel identifier (ch__). for example, if pin efr32bg12 blue gecko bluetooth ? low energy soc family data sheet pin definitions silabs.com | building a more connected world. rev. 1.0 | 156
pf7 is available on port aport2x as ch23, the register field enumeration to connect to pf7 would be aport2xch23. the shared bus used by this connection is indicated in the bus column. table 6.7. acmp0 bus and pin mapping port bus ch31 ch30 ch29 ch28 ch27 ch26 ch25 ch24 ch23 ch22 ch21 ch20 ch19 ch18 ch17 ch16 ch15 ch14 ch13 ch12 ch11 ch10 ch9 ch8 ch7 ch6 ch5 ch4 ch3 ch2 ch1 ch0 aport0x busacmp0x pa9 pa8 aport0y busacmp0y pa9 pa8 aport1x busax pf14 pf12 pf10 pf8 pf6 pf4 pf2 pf0 pc10 pc8 pc6 pc4 pc2 pc0 aport1y busay pf15 pf13 pf11 pf9 pf7 pf5 pf3 pf1 pc11 pc9 pc7 pc5 pc3 pc1 aport2x busbx pf15 pf13 pf11 pf9 pf7 pf5 pf3 pf1 pc11 pc9 pc7 pc5 pc3 pc1 aport2y busby pf14 pf12 pf10 pf8 pf6 pf4 pf2 pf0 pc10 pc8 pc6 pc4 pc2 pc0 aport3x buscx pb14 pb12 pb10 pb8 pb6 pa6 pa4 pa2 pa0 pd14 pd12 pd10 pd8 aport3y buscy pb15 pb13 pb11 pb9 pb7 pa7 pa5 pa3 pa1 pd15 pd13 pd11 pd9 aport4x busdx pb15 pb13 pb11 pb9 pb7 pa7 pa5 pa3 pa1 pd15 pd13 pd11 pd9 aport4y busdy pb14 pb12 pb10 pb8 pb6 pa6 pa4 pa2 pa0 pd14 pd12 pd10 pd8 efr32bg12 blue gecko bluetooth ? low energy soc family data sheet pin definitions silabs.com | building a more connected world. rev. 1.0 | 157
table 6.8. acmp1 bus and pin mapping port bus ch31 ch30 ch29 ch28 ch27 ch26 ch25 ch24 ch23 ch22 ch21 ch20 ch19 ch18 ch17 ch16 ch15 ch14 ch13 ch12 ch11 ch10 ch9 ch8 ch7 ch6 ch5 ch4 ch3 ch2 ch1 ch0 aport0x busacmp1x pj15 pj14 aport0y busacmp1y pj15 pj14 aport1x busax pf14 pf12 pf10 pf8 pf6 pf4 pf2 pf0 pc10 pc8 pc6 pc4 pc2 pc0 aport1y busay pf15 pf13 pf11 pf9 pf7 pf5 pf3 pf1 pc11 pc9 pc7 pc5 pc3 pc1 aport2x busbx pf15 pf13 pf11 pf9 pf7 pf5 pf3 pf1 pc11 pc9 pc7 pc5 pc3 pc1 aport2y busby pf14 pf12 pf10 pf8 pf6 pf4 pf2 pf0 pc10 pc8 pc6 pc4 pc2 pc0 aport3x buscx pb14 pb12 pb10 pb8 pb6 pa6 pa4 pa2 pa0 pd14 pd12 pd10 pd8 aport3y buscy pb15 pb13 pb11 pb9 pb7 pa7 pa5 pa3 pa1 pd15 pd13 pd11 pd9 aport4x busdx pb15 pb13 pb11 pb9 pb7 pa7 pa5 pa3 pa1 pd15 pd13 pd11 pd9 aport4y busdy pb14 pb12 pb10 pb8 pb6 pa6 pa4 pa2 pa0 pd14 pd12 pd10 pd8 efr32bg12 blue gecko bluetooth ? low energy soc family data sheet pin definitions silabs.com | building a more connected world. rev. 1.0 | 158
table 6.9. adc0 bus and pin mapping port bus ch31 ch30 ch29 ch28 ch27 ch26 ch25 ch24 ch23 ch22 ch21 ch20 ch19 ch18 ch17 ch16 ch15 ch14 ch13 ch12 ch11 ch10 ch9 ch8 ch7 ch6 ch5 ch4 ch3 ch2 ch1 ch0 aport0x busadc0x pi3 pi2 pi1 pi0 aport0y busadc0y pi3 pi2 pi1 pi0 aport1x busax pf14 pf12 pf10 pf8 pf6 pf4 pf2 pf0 pc10 pc8 pc6 pc4 pc2 pc0 aport1y busay pf15 pf13 pf11 pf9 pf7 pf5 pf3 pf1 pc11 pc9 pc7 pc5 pc3 pc1 aport2x busbx pf15 pf13 pf11 pf9 pf7 pf5 pf3 pf1 pc11 pc9 pc7 pc5 pc3 pc1 aport2y busby pf14 pf12 pf10 pf8 pf6 pf4 pf2 pf0 pc10 pc8 pc6 pc4 pc2 pc0 aport3x buscx pb14 pb12 pb10 pb8 pb6 pa6 pa4 pa2 pa0 pd14 pd12 pd10 pd8 aport3y buscy pb15 pb13 pb11 pb9 pb7 pa7 pa5 pa3 pa1 pd15 pd13 pd11 pd9 aport4x busdx pb15 pb13 pb11 pb9 pb7 pa7 pa5 pa3 pa1 pd15 pd13 pd11 pd9 aport4y busdy pb14 pb12 pb10 pb8 pb6 pa6 pa4 pa2 pa0 pd14 pd12 pd10 pd8 efr32bg12 blue gecko bluetooth ? low energy soc family data sheet pin definitions silabs.com | building a more connected world. rev. 1.0 | 159
table 6.10. csen bus and pin mapping port bus ch31 ch30 ch29 ch28 ch27 ch26 ch25 ch24 ch23 ch22 ch21 ch20 ch19 ch18 ch17 ch16 ch15 ch14 ch13 ch12 ch11 ch10 ch9 ch8 ch7 ch6 ch5 ch4 ch3 ch2 ch1 ch0 cext aport1x busax pf14 pf12 pf10 pf8 pf6 pf4 pf2 pf0 pc10 pc8 pc6 pc4 pc2 pc0 aport1y busay pf15 pf13 pf11 pf9 pf7 pf5 pf3 pf1 pc11 pc9 pc7 pc5 pc3 pc1 aport3x buscx pb14 pb12 pb10 pb8 pb6 pa6 pa4 pa2 pa0 pd14 pd12 pd10 pd8 aport3y buscy pb15 pb13 pb11 pb9 pb7 pa7 pa5 pa3 pa1 pd15 pd13 pd11 pd9 cext_sense aport2x busbx pf15 pf13 pf11 pf9 pf7 pf5 pf3 pf1 pc11 pc9 pc7 pc5 pc3 pc1 aport2y busby pf14 pf12 pf10 pf8 pf6 pf4 pf2 pf0 pc10 pc8 pc6 pc4 pc2 pc0 aport4x busdx pb15 pb13 pb11 pb9 pb7 pa7 pa5 pa3 pa1 pd15 pd13 pd11 pd9 aport4y busdy pb14 pb12 pb10 pb8 pb6 pa6 pa4 pa2 pa0 pd14 pd12 pd10 pd8 table 6.11. idac0 bus and pin mapping port bus ch31 ch30 ch29 ch28 ch27 ch26 ch25 ch24 ch23 ch22 ch21 ch20 ch19 ch18 ch17 ch16 ch15 ch14 ch13 ch12 ch11 ch10 ch9 ch8 ch7 ch6 ch5 ch4 ch3 ch2 ch1 ch0 aport1x buscx pb14 pb12 pb10 pb8 pb6 pa6 pa4 pa2 pa0 pd14 pd12 pd10 pd8 aport1y buscy pb15 pb13 pb11 pb9 pb7 pa7 pa5 pa3 pa1 pd15 pd13 pd11 pd9 efr32bg12 blue gecko bluetooth ? low energy soc family data sheet pin definitions silabs.com | building a more connected world. rev. 1.0 | 160
table 6.12. vdac0 / opa bus and pin mapping port bus ch31 ch30 ch29 ch28 ch27 ch26 ch25 ch24 ch23 ch22 ch21 ch20 ch19 ch18 ch17 ch16 ch15 ch14 ch13 ch12 ch11 ch10 ch9 ch8 ch7 ch6 ch5 ch4 ch3 ch2 ch1 ch0 opa0_n aport1y busay pf15 pf13 pf11 pf9 pf7 pf5 pf3 pf1 pc11 pc9 pc7 pc5 pc3 pc1 aport2y busby pf14 pf12 pf10 pf8 pf6 pf4 pf2 pf0 pc10 pc8 pc6 pc4 pc2 pc0 aport3y buscy pb15 pb13 pb11 pb9 pb7 pa7 pa5 pa3 pa1 pd15 pd13 pd11 pd9 aport4y busdy pb14 pb12 pb10 pb8 pb6 pa6 pa4 pa2 pa0 pd14 pd12 pd10 pd8 opa0_p aport1x busax pf14 pf12 pf10 pf8 pf6 pf4 pf2 pf0 pc10 pc8 pc6 pc4 pc2 pc0 aport2x busbx pf15 pf13 pf11 pf9 pf7 pf5 pf3 pf1 pc11 pc9 pc7 pc5 pc3 pc1 aport3x buscx pb14 pb12 pb10 pb8 pb6 pa6 pa4 pa2 pa0 pd14 pd12 pd10 pd8 aport4x busdx pb15 pb13 pb11 pb9 pb7 pa7 pa5 pa3 pa1 pd15 pd13 pd11 pd9 efr32bg12 blue gecko bluetooth ? low energy soc family data sheet pin definitions silabs.com | building a more connected world. rev. 1.0 | 161
port bus ch31 ch30 ch29 ch28 ch27 ch26 ch25 ch24 ch23 ch22 ch21 ch20 ch19 ch18 ch17 ch16 ch15 ch14 ch13 ch12 ch11 ch10 ch9 ch8 ch7 ch6 ch5 ch4 ch3 ch2 ch1 ch0 opa1_n aport1y busay pf15 pf13 pf11 pf9 pf7 pf5 pf3 pf1 pc11 pc9 pc7 pc5 pc3 pc1 aport2y busby pf14 pf12 pf10 pf8 pf6 pf4 pf2 pf0 pc10 pc8 pc6 pc4 pc2 pc0 aport3y buscy pb15 pb13 pb11 pb9 pb7 pa7 pa5 pa3 pa1 pd15 pd13 pd11 pd9 aport4y busdy pb14 pb12 pb10 pb8 pb6 pa6 pa4 pa2 pa0 pd14 pd12 pd10 pd8 opa1_p aport1x busax pf14 pf12 pf10 pf8 pf6 pf4 pf2 pf0 pc10 pc8 pc6 pc4 pc2 pc0 aport2x busbx pf15 pf13 pf11 pf9 pf7 pf5 pf3 pf1 pc11 pc9 pc7 pc5 pc3 pc1 aport3x buscx pb14 pb12 pb10 pb8 pb6 pa6 pa4 pa2 pa0 pd14 pd12 pd10 pd8 aport4x busdx pb15 pb13 pb11 pb9 pb7 pa7 pa5 pa3 pa1 pd15 pd13 pd11 pd9 opa2_n aport1y busay pf15 pf13 pf11 pf9 pf7 pf5 pf3 pf1 pc11 pc9 pc7 pc5 pc3 pc1 aport2y busby pf14 pf12 pf10 pf8 pf6 pf4 pf2 pf0 pc10 pc8 pc6 pc4 pc2 pc0 aport3y buscy pb15 pb13 pb11 pb9 pb7 pa7 pa5 pa3 pa1 pd15 pd13 pd11 pd9 aport4y busdy pb14 pb12 pb10 pb8 pb6 pa6 pa4 pa2 pa0 pd14 pd12 pd10 pd8 efr32bg12 blue gecko bluetooth ? low energy soc family data sheet pin definitions silabs.com | building a more connected world. rev. 1.0 | 162
port bus ch31 ch30 ch29 ch28 ch27 ch26 ch25 ch24 ch23 ch22 ch21 ch20 ch19 ch18 ch17 ch16 ch15 ch14 ch13 ch12 ch11 ch10 ch9 ch8 ch7 ch6 ch5 ch4 ch3 ch2 ch1 ch0 opa2_out aport1y busay pf15 pf13 pf11 pf9 pf7 pf5 pf3 pf1 pc11 pc9 pc7 pc5 pc3 pc1 aport2y busby pf14 pf12 pf10 pf8 pf6 pf4 pf2 pf0 pc10 pc8 pc6 pc4 pc2 pc0 aport3y buscy pb15 pb13 pb11 pb9 pb7 pa7 pa5 pa3 pa1 pd15 pd13 pd11 pd9 aport4y busdy pb14 pb12 pb10 pb8 pb6 pa6 pa4 pa2 pa0 pd14 pd12 pd10 pd8 opa2_p aport1x busax pf14 pf12 pf10 pf8 pf6 pf4 pf2 pf0 pc10 pc8 pc6 pc4 pc2 pc0 aport2x busbx pf15 pf13 pf11 pf9 pf7 pf5 pf3 pf1 pc11 pc9 pc7 pc5 pc3 pc1 aport3x buscx pb14 pb12 pb10 pb8 pb6 pa6 pa4 pa2 pa0 pd14 pd12 pd10 pd8 aport4x busdx pb15 pb13 pb11 pb9 pb7 pa7 pa5 pa3 pa1 pd15 pd13 pd11 pd9 vdac0_out0 / opa0_out aport1y busay pf15 pf13 pf11 pf9 pf7 pf5 pf3 pf1 pc11 pc9 pc7 pc5 pc3 pc1 aport2y busby pf14 pf12 pf10 pf8 pf6 pf4 pf2 pf0 pc10 pc8 pc6 pc4 pc2 pc0 aport3y buscy pb15 pb13 pb11 pb9 pb7 pa7 pa5 pa3 pa1 pd15 pd13 pd11 pd9 aport4y busdy pb14 pb12 pb10 pb8 pb6 pa6 pa4 pa2 pa0 pd14 pd12 pd10 pd8 efr32bg12 blue gecko bluetooth ? low energy soc family data sheet pin definitions silabs.com | building a more connected world. rev. 1.0 | 163
port bus ch31 ch30 ch29 ch28 ch27 ch26 ch25 ch24 ch23 ch22 ch21 ch20 ch19 ch18 ch17 ch16 ch15 ch14 ch13 ch12 ch11 ch10 ch9 ch8 ch7 ch6 ch5 ch4 ch3 ch2 ch1 ch0 vdac0_out1 / opa1_out aport1y busay pf15 pf13 pf11 pf9 pf7 pf5 pf3 pf1 pc11 pc9 pc7 pc5 pc3 pc1 aport2y busby pf14 pf12 pf10 pf8 pf6 pf4 pf2 pf0 pc10 pc8 pc6 pc4 pc2 pc0 aport3y buscy pb15 pb13 pb11 pb9 pb7 pa7 pa5 pa3 pa1 pd15 pd13 pd11 pd9 aport4y busdy pb14 pb12 pb10 pb8 pb6 pa6 pa4 pa2 pa0 pd14 pd12 pd10 pd8 efr32bg12 blue gecko bluetooth ? low energy soc family data sheet pin definitions silabs.com | building a more connected world. rev. 1.0 | 164
7. bga125 package specifications 7.1 bga125 package dimensions figure 7.1. bga125 package drawing efr32bg12 blue gecko bluetooth ? low energy soc family data sheet bga125 package specifications silabs.com | building a more connected world. rev. 1.0 | 165
table 7.1. bga125 package dimensions dimension min typ max a 0.80 0.87 0.94 a1 0.16 0.21 0.26 a2 0.61 0.66 0.71 c 0.17 0.21 0.25 d 6.90 7.00 7.10 e 6.90 7.00 7.10 d1 --- 6.00 --- e1 --- 6.00 --- e --- 0.50 --- b 0.25 0.30 0.35 aaa 0.10 bbb 0.10 ddd 0.08 eee 0.15 fff 0.05 note: 1. all dimensions shown are in millimeters (mm) unless otherwise noted. 2. dimensioning and tolerancing per ansi y14.5m-1994. efr32bg12 blue gecko bluetooth ? low energy soc family data sheet bga125 package specifications silabs.com | building a more connected world. rev. 1.0 | 166
7.2 bga125 pcb land pattern figure 7.2. bga125 pcb land pattern drawing efr32bg12 blue gecko bluetooth ? low energy soc family data sheet bga125 package specifications silabs.com | building a more connected world. rev. 1.0 | 167
table 7.2. bga125 pcb land pattern dimensions dimension min nom max x 0.25 c1 6.00 c2 6.00 e1 0.5 e2 0.5 note: 1. all dimensions shown are in millimeters (mm) unless otherwise noted. 2. dimensioning and tolerancing per ansi y14.5m-1994. 3. this land pattern design is based on the ipc-7351 guidelines. 4. all metal pads are to be non-solder mask defined (nsmd). clearance between the solder mask and the metal pad is to be 60 m minimum, all the way around the pad. 5. a stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release. 6. the stencil thickness should be 0.125 mm (5 mils). 7. the ratio of stencil aperture to land pad size should be 1:1. 8. a no-clean, type-3 solder paste is recommended. 9. the recommended card reflow profile is per the jedec/ipc j-std-020c specification for small body components. efr32bg12 blue gecko bluetooth ? low energy soc family data sheet bga125 package specifications silabs.com | building a more connected world. rev. 1.0 | 168
7.3 bga125 package marking efr32 pppppppppp yywwtttttt figure 7.3. bga125 package marking the package marking consists of: ? ppppppppp C the part number designation. 1. family code (b | m | f) 2. g (gecko) 3. series (1, 2,...) 4. device configuration (1, 2,...) 5. performance grade (p | b | v) 6. feature code (1 to 7) 7. trx code (3 = txrx | 2= rx | 1 = tx) 8. band (1 = sub-ghz | 2 = 2.4 ghz | 3 = dual-band) 9. flash (j = 1024k | h = 512k | g = 256k | f = 128k | e = 64k | d = 32k) 10. temperature grade (g = -40 to 85 | i = -40 to 125) ? yy C the last 2 digits of the assembly year. ? ww C the 2-digit workweek when the device was assembled. ? tttttt C a trace or manufacturing code. the first letter is the device revision. efr32bg12 blue gecko bluetooth ? low energy soc family data sheet bga125 package specifications silabs.com | building a more connected world. rev. 1.0 | 169
8. qfn48 package specifications 8.1 qfn48 package dimensions figure 8.1. qfn48 package drawing efr32bg12 blue gecko bluetooth ? low energy soc family data sheet qfn48 package specifications silabs.com | building a more connected world. rev. 1.0 | 170
table 8.1. qfn48 package dimensions dimension min typ max a 0.80 0.85 0.90 a1 0.00 0.02 0.05 a3 0.20 ref b 0.18 0.25 0.30 d 6.90 7.00 7.10 e 6.90 7.00 7.10 d2 5.15 5.30 5.45 e2 5.15 5.30 5.45 e 0.50 bsc l 0.30 0.40 0.50 k 0.20 r 0.09 aaa 0.15 bbb 0.10 ccc 0.10 ddd 0.05 eee 0.08 fff 0.10 note: 1. all dimensions shown are in millimeters (mm) unless otherwise noted. 2. dimensioning and tolerancing per ansi y14.5m-1994. 3. this drawing conforms to the jedec solid state outline mo-220, variation vkkd-4. 4. recommended card reflow profile is per the jedec/ipc j-std-020 specification for small body components. efr32bg12 blue gecko bluetooth ? low energy soc family data sheet qfn48 package specifications silabs.com | building a more connected world. rev. 1.0 | 171
8.2 qfn48 pcb land pattern figure 8.2. qfn48 pcb land pattern drawing efr32bg12 blue gecko bluetooth ? low energy soc family data sheet qfn48 package specifications silabs.com | building a more connected world. rev. 1.0 | 172
table 8.2. qfn48 pcb land pattern dimensions dimension typ s1 6.01 s 6.01 l1 4.70 w1 4.70 e 0.50 w 0.26 l 0.86 note: 1. all dimensions shown are in millimeters (mm) unless otherwise noted. 2. this land pattern design is based on the ipc-7351 guidelines. 3. all metal pads are to be non-solder mask defined (nsmd). clearance between the solder mask and the metal pad is to be 60 m minimum, all the way around the pad. 4. a stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release. 5. the stencil thickness should be 0.125 mm (5 mils). 6. the ratio of stencil aperture to land pad size can be 1:1 for all perimeter pads. 7. a 4x4 array of 0.75 mm square openings on a 1.00 mm pitch can be used for the center ground pad. 8. a no-clean, type-3 solder paste is recommended. 9. the recommended card reflow profile is per the jedec/ipc j-std-020 specification for small body components. efr32bg12 blue gecko bluetooth ? low energy soc family data sheet qfn48 package specifications silabs.com | building a more connected world. rev. 1.0 | 173
8.3 qfn48 package marking efr32 pppppppppp yywwtttttt figure 8.3. qfn48 package marking the package marking consists of: ? ppppppppp C the part number designation. 1. family code (b | m | f) 2. g (gecko) 3. series (1, 2,...) 4. device configuration (1, 2,...) 5. performance grade (p | b | v) 6. feature code (1 to 7) 7. trx code (3 = txrx | 2= rx | 1 = tx) 8. band (1 = sub-ghz | 2 = 2.4 ghz | 3 = dual-band) 9. flash (j = 1024k | h = 512k | g = 256k | f = 128k | e = 64k | d = 32k) 10. temperature grade (g = -40 to 85 | i = -40 to 125) ? yy C the last 2 digits of the assembly year. ? ww C the 2-digit workweek when the device was assembled. ? tttttt C a trace or manufacturing code. the first letter is the device revision. efr32bg12 blue gecko bluetooth ? low energy soc family data sheet qfn48 package specifications silabs.com | building a more connected world. rev. 1.0 | 174
9. revision history 9.1 revision 1.0 2017-04-14 ? added thermal characteristics table. ? finalized specification tables. all tables were updated with latest characterization data and production test limits. ? updated typical performance graphs for dc-dc. ? minor typographical, clarity, and consistency improvements. ? condensed pin function tables with new formatting. 9.2 revision 0.6 2017-02-23 ? updated 2 mbps ble receiver specifications with latest characteriztion data. ? added table-wide conditions to ble 1 mbps and 2 mbps receiver tables. ? clarified opamp noise measurement conditions in electrical spec table. 9.3 revision 0.5 2017-02-03 ? new corporate stylesheet applied. ? updated device block diagrams on front page and in system overview. ? updated feature list with latest characterization numbers. ? "bluetooth smart" changed to "bluetooth low energy" throughout document. ? all opns changed to revision b. ? minor typographical corrections and clarifications in system overview. ? electrical characteristics table changes ? all specification tables updated with latest characterization data and production test limits. ? split 2.4 ghz ble tables into separate tables for 1 mbps and 2 mbps data rates. ? split hfrco/auxhfrco table into separate tables for hfrco and auxhfrco. ? opamp, csen, and vdac specification line items updated to match test conditions. ? added tables for analog port (aport) and pulse counter (pcnt). ? added typical performance curves for supply current, dcdc, and rf parameters. ? added missing alternate functions and descriptions to pinout and alternate function tables. ? added aport connection diagram. ? corrected package marking description for qfn48 and bga125. ? corrected package marking diagram for qfn48. 9.4 revision 0.2 2016-09-21 initial release. efr32bg12 blue gecko bluetooth ? low energy soc family data sheet revision history silabs.com | building a more connected world. rev. 1.0 | 175
http://www.silabs.com silicon laboratories inc. 400 west cesar chavez austin, tx 78701 usa simplicity studio one-click access to mcu and wireless tools, documentation, software, source code libraries & more. available for windows, mac and linux! iot portfolio www.silabs.com/iot sw/hw www.silabs.com/simplicity quality www.silabs.com/quality support and community community.silabs.com disclaimer silicon labs intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers using or intending to use the silicon labs products. characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific device, and "typical" parameters provided can and do vary in different applications. application examples described herein are for illustrative purposes only. silicon labs reserves the right to make changes without further notice and limitation to product information, specifications, and descriptions herein, and does not give warranties as to the accuracy or completeness of the included information. silicon labs shall have no liability for the consequences of use of the information supplied herein. this document does not imply or express copyright licenses granted hereunder to design or fabricate any integrated circuits. the products are not designed or authorized to be used within any life support system without the specific written consent of silicon labs. a "life support system" is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected to result in significant personal injury or death. silicon labs products are not designed or authorized for military applications. silicon labs products shall under no circumstances be used in weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons. trademark information silicon laboratories inc.? , silicon laboratories?, silicon labs?, silabs? and the silicon labs logo?, bluegiga?, bluegiga logo?, clockbuilder?, cmems?, dspll?, efm?, efm32?, efr, ember?, energy micro, energy micro logo and combinations thereof, "the world?s most energy friendly microcontrollers", ember?, ezlink?, ezradio?, ezradiopro?, gecko?, isomodem?, precision32?, proslic?, simplicity studio?, siphy?, telegesis, the telegesis logo?, usbxpress? and others are trademarks or registered trademarks of silicon labs. arm, cortex, cortex-m3 and thumb are trademarks or registered trademarks of arm holdings. keil is a registered trademark of arm limited. all other products or brand names mentioned herein are trademarks of their respective holders.


▲Up To Search▲   

 
Price & Availability of EFR32BG12P433F1024GL125-B

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X